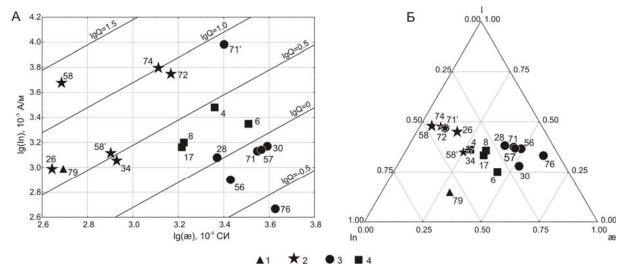
РЕЗУЛЬТАТЫ ПЕТРОМАГНИТНОЙ КОРРЕЛЯЦИИ ПЕРМОТРИАСОВЫХ ТРАППОВ Р. УДЖА (СЕВЕР СИБИРСКОЙ ПЛАТФОРМЫ)

К.М. Константинов¹, М.Д. Томшин², Д.П. Гладкочуб³, А.Е. Васильева²

¹Якутское научно-исследовательское геологоразведочное предприятие ЦНИГРИ АК «АЛРОСА», г. Мирный, e-mail: konstantinov@cnigri.alrosa-mir.ru

²Институт геологии алмаза и благородных металлов СО РАН, г. Якутск, e-mail: lexy_v@rambler.ru


³Институт земной коры СО РАН, г. Иркутск, e-mail: gladkochub@mail.ru

Петромагнитные данные играют важную роль при разработке единой Схемы базитового магматизма Сибирской платформы, поскольку они отражают характер изменения во времени магнитного поля Земли независимо от местоположения и генезиса изучаемых геологических образований. Особенно остро эта проблема стоит для северных территорий Сибирской платформы, с которыми связаны перспективами коренной алмазоносности. Для ее успешного решения приняты палеомагнитные данные по пермотриасовым траппам Далдыно-Алакитского алмазоностного района (ДААР) Западной Якутии [Kravchinsky et al., 2002; Константинов и др., 2004; 2007], Западного Прианабарья [Pavlov et al., 2007] и Тунгусской синеклизы [Gurevitch et al., 2004 Heunemann et al., 2004].

Отбор ориентированных образцов проведен в бассейне р. Уджа (ниже устья ее левого притока р. Томтор) из пород основного состава раннемезозойского вулканического комплекса, залегающих в виде силлов, даек и покровов. Согласно (Геологическая карта СССР 1965 и 1972 гг., соответственно, Анабарская и Оленекская серии листов), объекты разбиты на два участка: І - восточный борт Анабарского щита (нижнее течение р. Уджа от устья р. Чымара до р. Анабар,) и II - Уджинское поднятие (среднее течение р. Уджа). Базиты прорывают верхнепермские отложения и, в свою очередь, несогласно перекрываются отложениями плинсбахского яруса ранней юры. На участке I нами изучены три разновидности раннетриасовых траппов, представляющие: 1 - базальты βT_1 (обн. 79); 2 - силлы и дайки долеритов $\nu\beta T_1$ (обн. 26, 34, 58, 58', 72, 74) и 3 – силлы и дайки трахидолеритов и андезито-базальтов тВТ₁ (обн. 28, 30, 56, 57, 71, 71', 76). Установлено, что образцы из обн. 58' представляют контактовую зону пересечения силла долеритов дайкой трахидолеритов, а обн. 34 и 79 (устье р. Улегир) расположены в зоне развития мощных интрузий трахидолеритов субширотного простирания. По данным ИЗК СО РАН (г. Иркутск) возраст долерито-базальтов $\nu\beta T_1$ (обн. 4, 6, 8 и 17) участка II, выполненный Аг-Аг методом по монофракции плагиоклаза, оценивается 245 - 232 млн лет (соответствует раннему - среднему триасу). Всего, согласно принятой методике [Храмов и др., 1982], из 18 коренных обнажений отобрано около 190 ориентированных в современной системе координат штуфов, из которых выпилено 566 кубиков с ребром 20 мм. Лабораторные и камеральные работы проведены в Лаборатории петрофизических исследований Амакинской ГРЭ АК «АЛРОСА» по известным методикам [Винарский и др., 1987; Enkin et al., 1992].

Петромагнитными исследованиями установлено следующее:

Во-первых. наблюдается тенденция К увеличению значений восприимчивости, напрямую связанной с содержанием магнитных минералов. Согласно рис. 1 полученные данные четко разбиваются на три петромагнитные группы (ПМГ). К первой ПМГ принадлежат долериты увт, участка І из обн. 26, 34, 58, 58, 72 и 74 с пониженными значениями $\approx <1600 \cdot 10^{-5}$ СИ и повышенными значениями In до $6300 \cdot 10^{-3}$ А/м и фактором Q от 3 до 20. Базальты βT_1 из обн. 79 тоже относятся к этой ПМГ, но на тернарном графике (рис. 1 Б) значимо отличаются от всех фигуральных точек, что объясняется особенностью их формирования. Трахидолериты и андезито-базальты $\tau \beta T_1$ участка I из обн. 28, 30, 56, 57, 71, 71'и 76 характеризуются относительно повышенной æ>2500·10⁻⁵ СИ и пониженными значениями $\ln < 1600 \cdot 10^{-3}$ А/м и фактором Q<1. Исключение составляют образцы из обн. 71' (продолжение дайки обн. 71), у которых значение In достигает 10000·10⁻³ А/м, а фактор Q до 8 ед. Обычно, повышенные значения магнитных параметров характерны для эндоконтактовых зон даек. Магнитные характеристики долеритов $\nu\beta T_1$ из обн. 4, 6, 8 и базальты βT_1 из обн. 17, изученные на участке II, занимают промежуточные значения. Распределения параметров In, æ и Q одномодальные (ошибка среднего геометрического ε не превышает 1,06) и характеризуются: 1600<æ<3200·10⁻⁵ СИ, 1500<In<3100·10⁻³ А/м и фактором 1.3<Q<3. Вектора **In** и **I** изученных базитов имеют in situ как отрицательные, так и положительные направления. Подобная ситуация установлена для траппов разных фаз внедрения ДААР [Константинов и др., 2004].

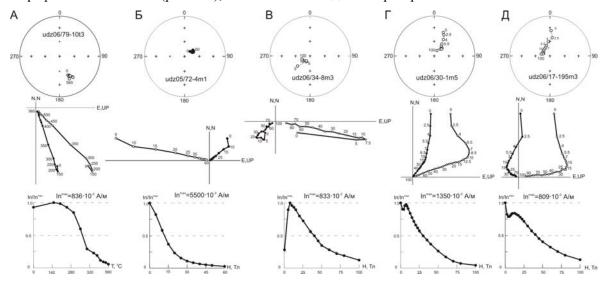


Рис. 1. Распределения магнитных параметров пермотриасовых траппов р. Уджа A — график распределения логарифмов In, α и α 0; α 5 — тернарный график In- α 1. Условные обозначения: 1 - базальты α 5 - долериты α 6 - долериты α 7 - долериты α 8 - долериты α 8 - долериты α 9 - номера обнажений.

Во-вторых, из анализа геологической и палеомагнитной ситуаций следует, что начальные этапы внедрения траппов происходили в эпоху существования прямой (N), а заключительные - обратной (R) полярности магнитного поля Земли. Это предположение согласуется с палеомагнитными данными, полученными по траппам ДААР [Константинов и др., 2007]. Как правило, вектора Іп изученных базитов имеют довольно простой состав, включающий вязкую $\mathbf{In}^{\mathbf{v}}$ и характеристическую $\mathbf{In}^{\mathbf{c}}$ компоненты (рис. 2). Компонент $\mathbf{In}^{\mathbf{v}}$ снимается температурой до 200 ⁰C или переменным магнитным полем до 15 нТл. Природа его, вероятнее всего, связана с перемагничиванием современным магнитным полем Земли. Компонент **In**^e является более магнитожестким и уверенно диагностируется в переменных магнитных полях свыше 15 - 20 нТл и температуры от 250 до 540 - 570 $^{\circ}$ C (что соответствует точкам Кюри титаномагнетитов). Направления векторов In^c изученных на участке траппов распадаются на две группы: N и R полярности. N-полярность векторов In^c установлена на участке I в долеритах $v\beta T_1$ из обн. 26, 58, 72 и 74 (рис. 2 Б). R-полярность векторов $\mathbf{In^c}$ установлена на I участке в базальтах βT_1 обн. 79 (рис. 2 A); долеритах $\nu \beta T_1$ из обн. 34 и 58' (рис. 2 В); трахидолеритах и андезито-базальтах $\tau \beta T_1$ из обн. 28, 30, 56, 57, 71, 71° и 76 (рис. 2 Γ), а так же на участке II в долерито-базальтах $\nu\beta T_1$ из обн. 4, 6, 8 и 17 (рис. 2 Д). Кроме того, аналогичные направления зарегистрированы в единичных образцах вмещающих терригеннокарбонатных пород томторской свиты венда (Vtm) в зоне экзоконтакта дайки долеритов (обн. 8). Средние палеомагнитные направления по перечисленным группировкам приведены в табл. Согласно геологической ситуации, не исключено, что траппы ранних фаз внедрения из обн. 79, 34 и 58' (рис. 2 А и В) испытали перемагничивание со стороны базитов поздней фазы, с образованием в зонах обжига мощных петромагнитных неоднородностей [Константинов и др., 2004]. По этой причине, положительные вектора первичной природы In^0 практически не сохранились, а вместо них образовались отрицательные вектора метахронной природы - In^m .

В-третьих, наблюдается остаточно хорошее совпадение палеомагнитных полюсов траппов р. Уджи и ДААР, рассчитанных по векторам $\mathbf{In^0}$ (рис. 3 A, табл.). Так, например, положение полюса долеритов участка I и II хорошо согласуется с полюсами, соответственно, первой и третьей фаз базитового магматизма ДААР. В то же время палеомагнитный полюс трахидолеритов и андезито-базальтов восточного борта Анабарского щита (участок I) отличается от долерито-базальтов Уджинского поднятия и ДААР, что не дает основания синхронизировать эти объекты по времени внедрения. Его полюс лежит вблизи отметки 220 \pm 5 млн лет траектории кажущейся миграции полюса (ТКМП) Сибирской платформы [Van der Voo, 1993].

Несмотря на полученные доказательства, данная интерпретация палеомагнитных данных указывает на обратную последовательность внедрения пермотриасовых траппов Западной Якутии относительно ТКМП Сибирской платформы: начальные и заключительные стадии имеют, соответственно, 160 и 280 млн. лет (рис. 3 А). Палеогеографические реконструкции Сибирской платформы, выполненные на основе первичных In^0 , свидетельствуют о ее высокоширотном положении. Скорее всего, она совершала колебательные движения около северного географического полюса (рис. 3 Б), что и вызвало подобный разброс палеомагнитных полюсов.

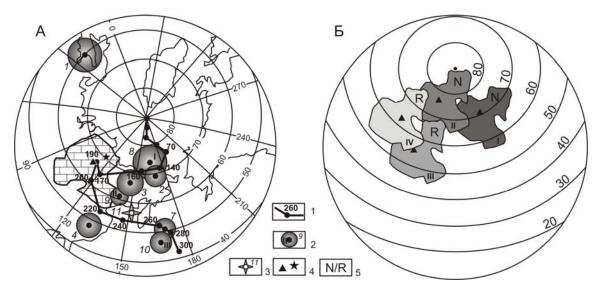


Рис. 2. Результаты палеомагнитных исследований пермотриасовых траппов р. Уджа Стереограммы: черные/светлые фигурки — положительные/отрицательные направления векторов **In**; сплошная/пунктирная дуга — часть круга перемагничивания векторов **In**, лежащего, соответственно, на положительной/отрицательной полусфере; звездочка с эллипсом — среднее направление векторов **In** с овалом доверия 95%. Диаграммы Зийдервельда: линии с черными/светлыми кружочками — проекции векторов **In** на горизонтальную/вертикальную плоскости.

Таблица. Палеомагнитные направления и полюсы пермотриасовых траппов Западной Якутии.

No	Объекты	N	Палеомагнитное направление				Палеомагнитный полюс			
ПП			Dcp, ⁰	Jcp, 0	k, ед.	α_{95}^{0}	Φ , ⁰	$\Lambda,^0$	dp/dm,0	fm, ⁰
Север Сибирской платформы, р. Уджа (настоящие исследования)										
Участок I (ϕ =71 0 ; λ =114,5 0)										
1	Обн. 79 - βТ1	17	121	-70	6,2	15,6	60	22	23,1/26,8	54
2	Обн. 26, 58, 72, 74 - νβТ ₁	26 (1)	70	81	29,8	5,3	69	168	9,9/10,2	72
3	<u>Обн. 34, 58'</u> - νβТ ₁	17 (2)	281	-84	26,9	7,0	66	145	13,6/13,9	78
4	Обн. 28, 30, 56, 57, 71, 76 - τβТ ₁	56 (15)	335	-77	21,2	4,2	47	130	7,3/7,8	65
Участок II (ϕ =71 0 ; λ =117,0 0)										
5	Обн. 4, 6, 8 - νβТ ₁	33 (1)	275	-74	21,7	5,5	54	174	9,0/9,9	60
6	Обн. 17 - βТ ₁	23 (3)	286	-72	34,6	5,2	48	169	8,1/9,2	57
7	Сводное (п. 5 + п. 6)	56 (4)	280	-73	25,6	3,8	51	172	6,0/6,8	59
Далдыно-Алакитский алмазоносный район [Константинов и др., 2007] (ϕ = 66^{0} ; λ = $111,5^{0}$)										
8	I фаза, $\nu\beta P_2$	2	42	80	639,5	9,9	74	165	18,2/19,0	71
9	II фаза, β_0 - $\nu\beta P_2$ - T_1	10*	98	83	337,1	2,6	61	140	5,0/5,1	76
10	III фаза, $\nu\beta T_1$	9*	277	-71	160,6	4,1	46	166	6,2/7,1	55
Средний P ₂ -T ₁ полюс по Сибирской платформе [Pavlov et al., 2007]										
11		8					57	151	4,0/4,0	

Примечание. N — количество образцов, участвующих в статистике, в скобках число больших кругов размагничиваний (в пп. 8 - 11 статистика рассчитана для уровня «объектов»). * - данные с учетом работы [Kravchinsky et al., 2002]. ϕ и λ - средние значения географической широты и долготы участков отбора ориентированных образцов. Палеомагнитное направление: средние склонение — Dcp и наклонение — Jcp, кучность - k, овал доверия с вероятностью 95% - α_{95} . Палеомагнитный полюс: широта - Φ , долгота - Λ , доверительные интервалы - dp/dm и палеоширота - fm.

Рис. 3. Интерпретация палеомагнитных исследований пермотриасовых траппов Западной Якутии. А - распределение палеомагнитных полюсов (номера согласно табл.). Б - палеогеографические реконструкции Сибирской платформы в раннем мезозое, выполненные по векторам **In**⁰. Условные обозначения: 1) интервал траектории кажущейся миграции полюса Сибирской платформы с указанием геологического возраста [Van der Voo, 1993]; 2) палеомагнитный полюс с овалом доверия 95%; 3) районы исследований - ДААР (треугольник) и р. Уджа (звездочка); 4) N/R — положительная/отрицательная полярность.

Список литературы

Винарский Я.С., Житков А.Н., Кравчинский А.Я. Автоматизированная система обработки палеомагнитных данных ОПАЛ. Алгоритмы и программы. Вып. 10/99. ВИЭМС, М.: 1987. 86 с.

Константинов К.М., Мишенин С.Г. и др. Распределение векторов естественной намагниченности пермотриасовых траппов Далдыно-Алакитского алмазоносного района // Геофизика, 2004^a . № 1. С. 49-53.

Константинов К.М., Иванюшин Н.В. и др. Петрофизическая модель кимберлитовой трубки Комсомольская // Геофизика, 2004^6 . № 6. С. 50-53.

Константинов К.М., Мишенин С.Г. и др. Петромагнитные неоднородности пермотриасовых траппов Далдыно-Алакитского района и их значение при поисках коренных месторождений алмазов // Палеомагнетизм и магнетизм горных пород: теория, практика, эксперимент. Материалы семинара. Борок. 18-21 октября 2007 г. М.: ГЕОС, 2007. С. 63-69.

Храмов А.Н., Гончаров Г.И и др. Палеомагнитология. Л.: Недра, 1982. 312 с.

Enkin R., Z.Y. Yang et al. Paleomagnetic constraints on the geodynamic history of China from the Permian to the Present. // J. Geophys. Res., 1992. 97. 13953-13989.

Gurevitch E.L., Heunemann C. et al. Palaeomagnetism and magnetostratigraphy of the Permian-Triassic Siberian trap basalts // Tectonophysics, 2004. 379. P. 211-226.

Heunemann C., Krása D. et al. Directions and intensities of the Earth's magnetic field during a reversal: results form the Permo-Triassic Siberian Trap Basalts, Russia // Earth and Planetary Science Letters. 2004. 218. P. 197-213.

Kravchinsky V.A., Konstantinov K.M. et al. Paleomagnetism of East Siberian traps and kimberlites: two new poles and paleogeographic reconstructions at about 360 and 250 Ma // Geophys. J. Int. 2002. № 48. P. 1-33.

Pavlov V.E., Courtillot V. et al. Paleomagnetism of the Siberian traps: New data and a new overall 250 Ma pole for Siberia // Tectonophysics, 2007. 443, P. 72-92.

Van der Voo R. Paleomagnetism of the Atlantic, Tethys, and Iapetus Oceans, Cambridge University Press, Cambridge. 1993. 411 p.