ПОВЕДЕНИЕ РТУТИ В АПАПЕЛЬСКИХ ТЕРМАЛЬНЫХ ИСТОЧНИКАХ (КАМЧАТКА)

Ю.В. Алехин¹, Г.А. Карпов², С.А. Лапицкий¹, Р.В. Мухамадиярова¹, А.Г. Николаева²

¹Московский государственный университет им. М.В.Ломоносова СО РАН, Москва, e-mail: alekhin@geol.msu.ru

²Институт вулканологии и сейсмологии ДВО РАН, Петропавловск-Камчатский, e-mail:karpovga@kscnet.ru

Апапельские горячие источники расположены в пределах Срединного хребта Камчатки, в правом борту верхней части долины р. Анавгай, поблизости от широко известного Чемпуринского рудопроявления ртути. Источники представляют собой поверхностные проявления высоко-температурной гидротермальной системы — Апапельской [Леонов, 1991].

По данным [Власов, Василевский, 1964] горячие источники приурочены к долгоживущей зоне Центрально-Камчатского глубинного разлома, сопровождающегося в районе Апапеля мощной и протяженной толщей окварцованных и каолинизированных пород. В основании стратиграфического разреза данного термального района залегают плиоценовые вулканогенные породы.

Тепловое питание источников обеспечивается близповерхностным магматическим очагом кислого состава и за счет более сложных процессов тепломассопереноса, происходящих в зонах глубоко проникающих разломов [Леонов, 1991].

Рассматриваемые нами термальные источники состоят из двух групп — Верхне- и Нижне Апапельских. Последние наблюдаются в пойме р. Анавгай, у бровки первой надпойменной террасы, близ устья ручья Апапель и отличаются от верхних терм меньшей температурой и минерализацией.

Под названием Верхне-Апапельских источников подразумеваются издавна известные местным жителям эвенам и корякам группа выходов горячих вод (грифонов) в верховьях круто падающего ручья Апапель (правого притока р. Анавгай). Это слабощелочные термы хлоридногидрокарбонатно-сульфатного, натриевого типа с максимальной температурой воды до 97°С, дебитом около 10 л/с и минерализацией до 1.50 г/л. Характерной химической спецификой для Апапельских терм является наличие в их водных растворах таких компонентов как $H_4 SiO_4 - 0.2$ г/л, $H_3 BO_3 - 0.1$ г/л, As - 0.0023 г/л и повышенных микроколичеств – Sr, Sb, Br и в том числе Hg (0.004 мг/л) [Иванов, 1958].

Исходя из этих данных обращает на себя внимание не слишком высокий количественный показатель последнего компонента в воде.

Более высокое содержание ртути на выходе Апапельских источников было отмечено [Озерова и др., 1988; Смирнов и др., 1972] в газовой фазе (75000 нг/м³), что на три порядка выше измеренного ими же значения в атмосферном воздухе.

Этот результат находится, с одной стороны, в противоречии с величиной константы Генри, определенной в работе [Сорокин и др., 1988], а с другой стороны, с нашими данными по валовым содержаниям ртути в термальных водах Камчатки [Алехин и др., 2007; Мухамадиярова и др., 2008], варьирующими в интервале 0.14 - 2.3 ррв при явном преобладании окисленных форм ртути.

Для проверки и согласования результатов этих работ осуществлены пробоотбор как термальных вод Апапельских источников, так и прямые измерения содержаний ртути в газопаровой фазе с помощью полевого атомного-абсорбера УКР-1МЦ и в пробе, отобранной в барботер с 3% HNO₃ после предварительной конденсации паровой фазы. Последнее значение (72 нг/м³ газопаровой фазы) хорошо согласуется с содержанием ртути на золотом сорбенте (92 нг/м³) и характеризует нуль-валентную форму переноса. Эти значения находятся в резком контрасте с данными по валовому содержанию в конденсатах паровой фазы по данным [Озерова и др., 1988] и нашим данным (Таблица).

Высокие значения содержаний ртути в конденсатах (3.3 – 124.0 ppb, пересчет объемной концентрации ртути в воздухе на массу конденсата, последняя колонка таблицы 1) находятся в явном противоречии с концентрациями ртути в водной фазе терм и могут быть объяснены значительным переносом в аэрозольной фазе.

Таблица. Содержания ртути в водах источников и конденсатах паровой фазы Апапельские источники

"верхние".

Источник	№ пробы	Характеристики источника	Нд в воде,	Hg, нг/м ³ , конденсат
	-	-	ppb	водного аэрозоля
APV-05	КМЧ-109/07	$T = 84.7$ 0 C; $S = 1068$ мг/л (по	0.194	9500
		NaCl); $pH = 7.8$; $Eh = 545 \text{ mV}$		
APV-09	КМЧ-113/07	$T = 64.1$ 0 C; $S = 536$ мг/л (по	0.481	190000
		NaCl); $pH = 7.9$; $Eh = 379 \text{ mV}$		
APV-13	КМЧ-110/07	$T = 97.6$ 0 C; $S = 1189$ мг/л (по	0.189	-
		NaCl); $pH = 8.8$; $Eh = 589 \text{ mV}$		
APV-14	КМЧ-111/07	$T = 88$ 0 C; $S = 1002$ мг/л по	0.227	311000
		(NaCl); $pH = 7.2$; $Eh = 367$		
		mV		
APV-19	КМЧ-114/07	$T = 55.5$ ^{0}C ; pH = 7.18;	0.242	<u>-</u>
		Eh = 400 mV		

Апапельские источники «нижние»

Источник	№ пробы	Характеристики источника	Нд в воде,	Hg, нг/м ³ , конденсат
			ppb	водного аэрозоля
Источник	КМЧ-	T = 41.7 °C; $S = 586$ мг/л (по	0.188	-
№1	103/07	NaCl); $pH = 7.3$; $Eh = 310 \text{ mV}$		
Источник	КМЧ-	T = 41.5 °C; $S = 1024$ мг/л (по	0.177	-
№2 ванна),	104/07	NaCl); $pH = 8.4$; $Eh = 329 \text{ mV}$		
1-ый слив				
Источник	КМЧ-	T = 52.2 °C; $S = 1041$ мг/л	0.296	2680
№2 ванна),	105/07	(по NaCl); pH = 6.75; Eh =		
2-ой слив		347 mV		
ванна с	КМЧ-	T = 25.7 °C; $S = 738$ мг/л (по	0.177	-
грифонами	106/07	NaCl); $pH = 6.8$; $Eh = 366 \text{ mV}$		
«Канавные	КМЧ-	$T = 81-81.5$ 0 C; $S = 1170$ мг/л	0.487	7350
источники»	107/07	(по NaCl); pH = 7.3;		
		Eh = 445 mV		

В работе [Озерова и др., 1988] отмечены высокие содержания ртути в конденсатах парогазовой фазы современных термальных источников, что свидетельствует, по мнению авторов, о поступлении мантийной ртути по зонам глубинных разломов, продолжающееся и в настоящее время. Так, приводимые авторами данные о содержаниях ртути в газовой фазе термальных источников кальдеры Узон, колеблются от $1.0 \cdot 10^{-6}$ до $2.5 \cdot 10^{-5}$ г/м 3 (2.5-60.0 ppb, т.е. 2.5-60.0 мкг/л конденсата водяного пара плотностью 0.4 г/л). Самые высокие содержания ртути отмечены авторами при отборе конденсатов парогазовых струй из кратера вулкана Мутновский, - они составляли 5-7.5 \cdot 10^{-5} г/л (50-75 мкг/л, ppb), достигая очень высоких концентраций $2 \cdot 10^{-3}$ г/л конденсата, что авторами связывается с извержением вулкана Горелого. Следует отметить, что такие концентрации (от 2.5 до 5000 ppb) для конденсата 85-100 °C пара на самом деле уникальны и отвечают периодам активизации вулканической и флюидной активности.

Исключение представляет система кальдеры Узон, для которой до настоящего периода высокие концентрации ртути достаточно стабильны не только в газо-паровой фазе, но и в хлоридно-натриевых водах [Набоко, 1974], достигая (по данным ВСЕГИНГЕО) 2.5 - 12.5 ppb.

Но в то же время, по данным [Алехин и др., 2005], для эксплуатационных скважин ГеоТЭС Мутновской геотермальной системы, содержания ртути в конденсатах и сепаратах, обычно находятся в пределах 0.2 - 0.5 ppb. Для других геотермальных систем эти значения зачастую [Карпов и др., 2008] бывают несколько выше, но в норме в водах редко > 1 ppb.

Это находится в согласии с приводимыми здесь результатами последних наших определений содержания ртути в воде Апапельских источников. Помимо этого, хорошо подтверждает раннюю версию по [Сорокин и др., 1988] о доминировании в газопаровой фазе паров атомарной ртути, а также медленном накоплении ее окисленных форм [Сорокин и др., 1978] в растворах и переходе в сульфидные фазы при определенном режиме сероводорода.

Согласовать и примирить эти противоречивые данные по относительно низким концентрациям в жидкой фазе и высоким концентрациям в газопаровой, удается только относительно версии преобладания катионных форм ртути в аэрозольной фазе.

Для Апапельских термальных вод отдельной задачей является решение проблемы источника ртути. По данным [Власов, 1958] «находку киновари» здесь можно было бы объяснить размывом плиоценовых окварцованных пород, но сходство состава вод Апапельских источников с составом вод калифорнийских, отлагающих и по ныне киноварь, говорит в пользу продолжающегося ее осаждения и в современную эпоху [Щеглов, 1962]. По материалам [Набоко и др., 1977] также имеет геохимическое обоснование версия о продолжающемся в настоящее время унаследованном процессе минерало- рудообразования.

Работа поддержана грантами РФФИ №№ 05-05-64789, 06-05-72550 и 08-05-00581-НЦНИЛ.

Список литературы

Алехин Ю.В., Лапицкий С.А., Пухов В.В., Ткаченко С.Ю. Экспериментальные исследования нуль-валентных форм переноса тяжелых металлов и глобальный цикл ртути // XV Российское совещание по экспериментальной минералогии, Сыктывкар. 2005. С. 141-143.

Алехин Ю.В., Лапицкий С.А., Мухамадиярова Р.В., Пухов В.В. Новые результаты исследования отдельных составляющих геохимического цикла ртути // Электр. научно-информ. журнал "Вестник Отделения наук о Земле РАН". 2007. № 1 (25). ISSN 1819-6586.

Власов Г. М., Василевский М. М. Гидротермально измененные породы Центральной Камчатки, их рудоносность и закономерности пространственного размещения. М.: Наука, 1964. 320 с.

Иванов В.В. Основные закономерности формирования и распространения термальных вод Камчатки // Молодой вулканизм СССР. Труды Лаборатории вулканологии АН СССР. Вып. 13. М.: Изд-во АН СССР, 1958. С. 186-212.

Карпов Г.А., Алехин Ю.В., Лапицкий С.А. Новые данные по микроэлементному составу гидротерм и фумарол Камчатки // Материалы ежегодной конференции, посвященной Дню вулканолога. Петропавловск-Камчатский, 2008. С. 120-131.

Леонов В.Л. О некоторых закономерностях развития гидротермальной и вулканической деятельности на Камчатке // Вулканология и сейсмология, 1991. № 2. С. 28-40.

Мухамадиярова Р.В., Алехин Ю.В., Лапицкий С.А. Результаты определения региональных вариаций содержания ртути в твердой, жидкой и газовой фазах территории России // Материалы III Региональной школы – конференции молодых ученых "Водная среда и природно - территориальные комплексы: исследование, использование, охрана". Петрозаводск, 2008. С. 79-84.

Набоко С.И. Металлоносность кальдеры Узон // Гидротермальные минералообразующие растворы областей активного магматизма. Новосибирск: Наука, 1974. С. 91–93.

Набоко С.И., Карпов Г.А., Главатских С.Ф. Минералого-геохимические особенности Апапельских термальных источников // Бюлл. вулканол. станции, 1977. № 53. С. 102-111.

Озерова Н.А., Шикина Н.Д., Борисов М.В., Широков В.А., Карпов Г.А., Кирсанов И.Т., Груздев М.А., Голованова Т.И. Ртуть в современном гидротермальном процессе // Современные гидротермы и минералообразование. М.: Наука, 1988. С. 34-49.

Смирнов В.И., Кузнецов В.А., Озерова Н.А., Федорчук В.П. Новое в геохимии ртути // Геология рудных месторождений, 1972. N 4. С. 17-30.

Сорокин В.И., Алехин Ю.В., Дадзе Т.П. Растворимость ртути в системах $Hg-H_2O$, $Hg-S-(Cl)-H_2O$ и формы ее существования в термальных водах Камчатки и о-ва Кунашир // Очерки физико-химической петрологии, 1978. Вып. 8, С. 133-149.

Сорокин В.И., Покровский В.А., Дадзе Т.П. Физико-химические условия образования сурьмяно-ртутного оруденения. М.: Наука, 1988. 144 с.

Щеглов И.И. О современном отложении киновари в источнике Апапель // ДАН СССР, 1962. Т. 145. № 6. С. 1373-1374.