<u>V. ГЕОХИМИЧЕСКАЯ ХАРАКТЕРИСТИКА ОСНОВНЫХ И</u> КИСЛЫХ ВУЛКАНИТОВ УЗОНСКО-ГЕЙЗЕРНОЙ ДЕПРЕССИИ

Элементы литофильной группы (Rb, Li, U, Th) и элементы группы железа (V, Cr, Ni, Co) используются для выяснения происхождения основных и кислых вулканитов.

Оценка распространенности этих элементов, а также рудных (Hg, Zn, V, Mo, Sn, W, Ag, Au) позволяет определить исходную концентрацию, характерную для неизмененных пород данного региона. Интересно проследить эволюцию химизма пород одного состава в пределах трех разновозрастных комплексов - докальдерного, кальдерообразующего и посткальдерного. Для сопоставления приводится материал по аналогичному району Семячинской депрессии. Основной посткальдерный вулканизм очень слабо проявлен в Узонско-Гейзерной депрессии и широко - в Семячинской.

В вулканических породах были определены Na, K, Li, Rb, Cs (методом пламенной фотометрии), V, Cr, Ni, Co, B, Sn (спектральным методом), Mo, W, Cu, Ag, Sc (нейтронно-активационным методом), Zn (атомно-адсорбционным методом), U (люминесцентным методом), Th, Hg (колориметрическим методом).

Данные по содержанию изученной группы элементов в образцах вулканитов Узон-Семячинского района приведены в табл. 6.

Докальдерный этап вулканизма Узонско-Гейзерной депрессии проявлен породами основного (базальты) и кислого (дациты) состава, кальдерообразующий этап - огромными выбросами кислых игнимбритов, посткальдерный этап - кислыми лавами. Так как в Узонско-Гейзерной депрессии в посткальдерный этап слабо проявился основной вулканизм, в табл. 6 приведены данные по основным и кислым вулканитам посткальдерного этапа развития Семячинкой депрессии.

Таблица 6 Аналитические данные для образцов вулканических пород Узон-Гейзерной и Бол. Семячикской депрессий, γ /г, за исключеним SiO₂, Na и K, которые даются в % и Au – в п ·10⁻⁷%

					Дока	льдеонь	ый этаг	т Узон-	Гейзерн	юй депр	ессии					
Элемент		Кисл	ые пор	оды		Основные породы										
	-1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	
SiO ₂ Na K Rb K/Rb Cs U Th Th/U Li B V Cr Ni Co Ni/Co V/Ni Se Zn Hg Sn Mo	1,5 26 580 1,0 1,25 1,4 100 5 9 9 1 11 5.8 -	2 67,4 3,4 1,5 39 360 — 12 — 2 37 11 4 6 0,7 9 — 0,035 2,2	66,7 	61,9 3.6 1.4 24 580 — — — 110 12 27 23 1,2 4 — — 0.046	65.7 1,6 26 610 — — — 6 48 6 12 6 1,2 6 — — 1,2	49,3 2,4 7 	51.1 3.3 0,60 9 670 0,37 0,50 1,3 4 300 54 31 25 1,2 10 6,2 1,4 4,5	51,2 0,35 0,40 1,1 340 29 23 34 0,7 15 	50,1 3,6 0,7 5 1340 — 5 290 120 49 44 0,9 6 6 98 0,032	3,6 0,8 9 910 — — — 6 320 34 24 34 0,7 13 — 111 0,066	3,6 1,0 13 770 	0,7 5 1400 	50,3 	51,8 2,9 0,8 6 1300 — 0,50 9 — 250 57 30 40 0,8 8 4	54,7 3,5 0,6 8 750 0,444 0,56 1,3 9 260 24 23 35,5 0,7 11 — 85 0,046	
Ag Au	$0.27 \\ 0.08 \\ 0.3$	=	$0.25 \\ 0.06 \\ 0.3$	=	_	=	$0.05 \\ 0.04 \\ 0.3$	Ξ	=	=	Ξ	Ξ	=	, =	=	

Узонско-Гейзерная депрессия Вулканотектонич	еская депрессия массива Бол. Семячик	
Элемент Основные породы Игнимбриты анд	цезито-дацитового, дацитового состава	
16 17 18 19 20 21 22 23 24 25	5 26 27 28 29 30	
Rb 25 4 7 46 12 38 18 40 32 2 K/Rb 400 1200 860 620 1400 470 780 420 400 67 Cs —	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	
V - 300 220 250 - 96 - 85 140 4 Cr - 14 36 100 - 8 10 17 18 7 Ni - 15 12 60 - 13 3 9 10 1 Co - 20 35 36 - 10 5 9 20 1 Ni/Co - 0,7 0,3 1,7 - 1,3 0,6 1,0 5 3 V/Ni - 20 18 4 - 7 - 8 14 3 Sc - 55,2 8 14 3 Sc - 55,2 103 82 88 101 Hg 0,1 0,05 0,08 0,07 - 1 Sn - 2,0 - 3,2 1 Mo - 1,0 3,6	38 43 — — 7 — 6 12 — — 15 — 5 7 — — 5 — 3 5 — — 3 — 1,6 1,4 — — 5,8 — — — — — 90 — — — 5,8 — — — — — 90 0 — — 1,3 — 1,5 — 1,6 — 3 — — — — 1,76 — — — — 1066 — — — —	
Ag - 0,22 0,12 0	,76 — — — — — — — — — — — — — — — — — — —	
Кальдерный э		
Вулканотектоническая депрессі	ия массива Бол. Семячик	
Элемент Игнимбриты андезито-дацитов 31 32 33 34 35 36 37 38 39	вого, дацитового состава 40 41 42 43 44 45 46 47	
SiO ₂ — — — — — — — — — — — — — — Na 3.7 3.0 — 3.1 — 2.5 2.9 3.9 —	2,5 3,2 = 3,5 = = = 2,5	
K 1,3 2,4 1.8 1.9 1,7 1.5 2,4 Rb 38 45 55 33 40 51 40 35	1.9 1.4 1.6 1.5 1.6 2.1 1.7 1.8 39 48 26 35 19 36 25 40	
K/Rb 340 480 330 540 480 330 380 600 Cs — — — — — — — 1.7	490 290 620 430 800 580 640 450	
U 1.0 1.7 Th - 0.76 0.50 - 0.5 0.8 - 0.87 Th/U	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	
Th/U 0.8 16 Li - 20 16 18 15 11 18 9 16 B 17 - 30	14 27 12 11 23 25 12 21	
V 40 36 70 44 41 91 51 72 Cr 22 9 10 18 10 20 19 9	60 30 85 77 — 80 — 27 9 11 18 — 8 —	
Ni 22 7 14 6 12 10 15 11 — Co 5 5 6 5 4 10 5 5 — Ni/Co 4 14 2 12 3 1.0 3 2 —	11 4 22 9 — — 12 — 4 2 6 7 — — 5 — 2,5 2 3 1,3 — — 2,4 —	
Ni/Co 4 1,4 2 1,2 3 1,0 3 2 V/Ni 2 5 7 4 9 10 7 Sc	2,5 2 3 1,3 2,4 - 5 8 4 9 7 - 8,5	
Zn - 72 - 37 - 75 80 75 60 Hg 0.01 0.01 - 0.014 - 0.042 0.029 0.029 -	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	
Sn — — 1,3 2,2 — — — 1,5 1,5 Mo — — — — — — — — — — — — — — — — — — —	2,0	
W	0.09	
	•	
Посткальдерн		
Узонско-Гейзерная депрессия Элемент Кислые породы	Массив Бол. Семячик Основные породы	
48- 49 50 51 52 53 54 55 56	5 57 58 59 60 6t 62 6	3
SiO ₂ — 67,3 65,5 70,7 — 69,9 — — — Na — — 3,1 3,1 — 3,6 —	$\frac{1}{3.6}$ $\frac{1}{2.1}$ $\frac{1}{2.1}$ $\frac{1}{2.0}$ $\frac{1}{2.0}$	2,5
K 1,5 1,8 1,5 1,9 1,9 2,0 2,0 1,8 2, Rb 20 22 26 30 40 40 32 27 32 K/Rb 1,7 — — — 3,3 — —	$egin{array}{cccccccccccccccccccccccccccccccccccc$	2,5),7 1
Cs 750 800 580 630 470 500 630 670 660 U 4,50 1,3 - 0,90 - 0,	60 470 530 810 600 700 700 60	00
$\begin{array}{cccccccccccccccccccccccccccccccccccc$.1 0.75 - 0,2 0,25 0,20	_
Li 15 17 14 13 21 21 17 22 18 B 15 21 26 20 — 18 15 — 2	$egin{array}{cccccccccccccccccccccccccccccccccccc$	6
Cr - 4 14 13 14 7 - 10	$egin{array}{cccccccccccccccccccccccccccccccccccc$	_
Co $ -$ 5 $\frac{4}{3}$ $\frac{3}{10}$ $\frac{10}{9}$ $ \frac{3}{5}$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	
Ni/Co — — 2 5 3 4 4 4 — 9	2 12 05 00 08 08	_
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$egin{array}{cccccccccccccccccccccccccccccccccccc$	_
Ni/Co	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	
Ni/Co	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	16

								Массив	Бол. Се	мячик						
Элемент								Основн	ые пор	оды						
SiO ₂ Na K Rb K/Rb Cs Th/U Li B V Cr Ni/Co Ni/Co V/Ni Sc Zn Hg Sn Mo W Ag Au	64 	65 	66	67 	68 	69 — — 0.47 0,23 1,3 — — 9,2 — 5,7 0,4 0,07 0,01	70 — 0.8 9 — 880 — 9 8 8 180 42 21 40 0.5 9 — 1.7 —	71 	72 	73 — 2,0 0,8 15 — 540 0,5 8 8 29 — — — — — — — — — — — — — — — — — — —	74 -2,44 0,8 20 -400 - 6 -180 34 19 20 1 10 - 76 0,17 - -	75 — 2,2 0,8 11 — 700 0,14 0,5 3,6 — 240 33 19 18 1 13 — 77 0,1 — — — —	76 — 2.2 0.8 14 — 600 — 7 — 190 30 26 23 1,1 7 7 7 0,05 — —	77 	78 	79 — 1,1 17 — 650 0,25 0,4 1,5 10 — 100 11 16 18 0,9 6 — — 2.2
	0,1					401		179.4	1,0							
							Mac	SOUR EO	Coma	11412						
Элемент					Осно	вные по		сив Бол	т. Семяч	чик			H	ислые	породы	
Элемент	80	81	82	83	Осно 84	вные по 85		сив Бол 86	1. Семяч 87	ник	88	89		(ислые 90	• породы 91	92
SiO_2	80	_	_	_	84	85 —	роды	86	87	ник	_	_		90		_
SiO ₂ Na	_	_	_	_ 2,0	84 2,1	85 — 1,6	роды	86 - 2.7	87		3,0	_		90	91	_
SiO ₂ Na K Rb	- 0.9 14	_	_	_	84	85 —	роды	86 2.7 1,0 25	87 		- 3,0 1,5 43	1,5 21		90 	91 - 1,4 27	
SiO ₂ Na K Rb K/Rb	- 0.9 14 0,5	_ 0,9 10	 0,8 14 	2,0 0,6 18	84 	85 	ороды 5	86 2.7 1.0 25	87 1,2 25		3,0 1,5 43	1,5 21		90 	91 - 1.4 27	
SiO ₂ Na K Rb K/Rb Cs U	- 0.9 14	0,9 10 	0,3 14 - 550	- 2,0 0,6 18	2,1 0,7 13	85 	ороды 5	86 2.7 1,0 25	87 		- 3,0 1,5 43	- 1,5 21 - 700 1,0	(90 	91 - 1,4 27	
SiO ₂ Na K Rb K/Rb Cs U Th	0.9 14 0,5 700	900 0,50 0,40	0,8 14 - 550 0,40 0,40	2,0 0,6 18 330	2,1 0,7 13 500	85 	ороды 5	86 	1,2 25 480		3,0 1,5 43 — 350	1,5 21 - 700 1,0 1,34	(90 	91 1,4 27 520	 1,5 22 680 0,6 0,50
SiO2 Na K Rb K/Rb Cs U Th Th/U	0,9 14 0,5 700	900 0,50 0,40 0,8	0,8 14 - 550 0,40 0,40 1,0	2,0 0,6 18 330	84 	85 	ороды 5	86 	87 1,2 25 480		3,0 1,5 43 350	 1,5 21 700 1,0 1,34 1,3	(90 	91 	1,5 22
SiO2 Na K Rb K/Rb Cs U Th Th/U Li B	0.9 14 0,5 700	900 0,50 0,40	0,8 14 - 550 0,40 0,40	2,0 0,6 18 330 — - - 8	2,1 0,7 13 500 - 5 25	85 — 1.6 0,2:5 5 — 500 — 4 12	рроды ; 5	86 	87 		3,0 1,5 43 350 - - 22	1,5 21 - 700 1,0 1,34 1,3	(90 	91 	
SiO2 Na K Rb K/Rb Cs U Th Th/U Li B	0.9 14 0,5 700			2,0 0,6 18 330 — — — — — 230	84 	85 — 1.6 0,2 5 — 500 — — 4 122	рроды ; 5	86 	87 		3,0 1,5 43 350 - - 22 - 43	1,5 21 - 700 1,3 1,3 1,3 18 - 80	(90 	91 	1,5 22
SiO2 Na K Rb K/Rb Cs U Th Th/U Li B V	0.9 14 0,5 700			2,0 0,6 18 330 	84 	85 — 1.6 0,2: 5 — 500 — 4 12 299 58	рроды ; 5	86 	87 		3,0 1,5 43 350 - - 22 - 43 28	1,5 21 -700 1,0 1,34 1,3 18 -80 36	(90 	91 	1,5 22 680 0,6 0,50 0,8 15 40 45 8
SiO2 Na K Rb K/Rb Cs U Th Th/U Li B V Cr Ni Co	0.9 14 0,5 700 — 8			2,0 0,6 18 330 — — — — — 230	84 	85 — 1.6 0,2 5 — 500 — 4 12 299 58 31 34	рроды (5 (5	86 2.7 1.0 25 400 — — 13 — 180 35 16 23	87 1,2 25 480 - 9 11 140 28 28 20		3,0 1,5 43 350 - - 22 - 43 28 15 7	1,5 21 - 700 1,0 1,34 1,3 18 - 80 36 26	(90 	91 	1,5 22 680 0,6 0,50 0,8 15 40 45 8
SiO2 Na K Rb K/Rb Cs U Th Th/U Li B V Cr Ni	0.9 14 0.5 700 	0,9 40 		2,0 0,6 18 330 - - 8 - 230 32 26 34 0,8	2,4 0,7 13 500 - 5 25 240 46 25 34 0,8	85 —6.0,22 5 — 500 — 4 122 299 588 341 344 0.5	рроды (5 (5	86 2.7 1.0 25 400 — — 13 — 180 35 16 23 0,7	87 1,2 25 480 - 9 11 140 28 28 20 1,4		3,0 1,5 43 350 - - 22 - 43 28 15 7	1,5 21 700 1,0 1,3 1,3 18 80 36 26 88 3	(90 	91 	1,5 22 680 0,6 0,50 0,8 15 40 45 8
SiO2 Na K Rb K/Rb Cs U Th Th/U Li B V Cr Ni	0.9 14 0,5 700 — — 8 — —	0,9 40 		2,0 0,6 18 330 - 8 - 230 32 226 34	84 	85 — 1.6 0,2 5 — 500 — 4 12 299 58 31 34	рроды (5 (5	86 2.7 1.0 25 400 — — 13 — 180 35 16 23	87 1,2 25 480 - 9 11 140 28 28 20		3,0 1,5 43 - 350 - - 22 - 43 28 15	1,5 21 - 700 1,0 1,34 1,3 18 - 80 36 26	(90 	91 	1,5 22 680 0,6 0,50 0,8 15 40 45 8
SiO2 Na K Rb K/Rb Cs U Th Th/U Li B V Cr Ni Co Ni/Co V/Ni Sc Zn	0.9 14 0.5 700 			2,0 0,6 18 	2,1 0,7 13 500 - 5 25 210 46 25 31 0.8 8 79	85 	ороды 55)	86 — 2.7 1,0 25 — 400 — 13 — 180 35 16 23 0,7 11 — 72	1,2 25 480 9 11 140 28 28 28 20 1,4		3,0 1,5 43 350 		(90 	91 	1,5 22 680 0,6 0,50 0,8 15 40 45 8 14 6 2 3
SiO ₂ Na K Rb K/Rb Cs U Th Th/U Li B V Cr Ni Co Ni/Co V/Ni Sc Zn Hg	0.9 14 0.5 700 		0,3 14 - 550 0,40 0,40 1,0 7 23 210 19 33 30 1,1 6 -	2,0 0,6 18 	2,1 0,7 13 500 - 5 25 210 46 25 31 0.8 8 - 79 0,13	85 	ороды 55)	86 — 2.7 1.00 25 — 400 — — 13 — 180 35 166 23 0,77 11 — 72 0,13	87 		3,0 1,5 43 350 - - 22 43 28 15 7 2 3 60 6.14			90 	91 	1,5 22 680 0,6 0,50 0,8 15 40 45 8 14 6 2 3
SiO2 Na K Rb K/Rb Cs U Th Th/U Li B V Cr Ni Co Ni/Co V/Ni Sc Zn	0.9 14 0.5 700 			2,0 0,6 18 	2,1 0,7 13 500 - 5 25 210 46 25 31 0.8 8 79	85 	ороды 55)	86 — 2.7 1,0 25 — 400 — 13 — 180 35 16 23 0,7 11 — 72	1,2 25 480 9 11 140 28 28 28 20 1,4		3,0 1,5 43 350 			90 	91 	1,5 22 680 0,6 0,50 0,8 15 40 45 8 14 6 2 3
SiO2 Na K Rb K/Rb Cs Th Th/U Li B V Cr Ni Co Ni/Co V/Ni Sc Zn Hg Sn Mo W	0.9 14 0.5 700 		0,3 14 - 550 0,40 0,40 1,0 7 23 210 19 33 30 1,1 6 -	2,0 0,6 18 	2,1 0,7 13 500 - - 5 210 46 25 31 0.8 8 79 0,13	1.6 0,2 5 5 500 4 12 299 58 34 34 0.9 9 9 0.1	ороды 55)	86 — 2.7 1,0 25 — 400 — 13 — 180 35 16 23 0,7 11 — 2 0,13 — —	87 			1,5 21 700 1,0 1,3 18 80 36 26 8 8 3 3		90	91 	1,5 22 680 0,6 0,50 0,8 15 40 45 8 14 6 2 3
SiO2 Na K Rb K/Rb Cs U Th Th/U Li B Cr Ni/Co V/Ni Sc Zn Hg Sn	0.9 14 0.5 700 			2,0 0,6 18 	2,1 0,7 13 500 - 5 25 210 46 25 31 0.8 8 79 0,13	85 — 1.6 0,2: 5 — 5000 — 4 12290 588 311 344 0.5 9 — 822 0.1	ороды 55)	86 — 2.7 1,0 25 — 400 — 13 — 180 35 16 23 0,7 11 — 72 0,13 —	87 1.2 25 480 		3,0 1,5 43 350 - - 22 43 28 15 7 2 3 60 6.14			90 	91 	

Примечание. 9-14, 13-1, 14-2, 15-11, 16-9,17-5, 18-10(номер образца данной таблицы-номер образца табл.1). 2-6, 4-1, 5-4, 50-17, 53-20, 51-22 (номер образца данной таблицы-номер образца табл. 2)

Сравнение средних содержаний элементов в вулканических породах показывает сходство содержаний породообразующих и микроэлементов, хотя отмечается слабое «покисление» основных пород посткальдерного этапа (табл. 7). Оно ыражается в повышенном содержании элементов группы железа (V = $290 \, \text{γ/r}$; $1\text{г} = 46 \, \text{y/r}$; $\text{Ni} = 29 \, \text{γ/r}$; $\text{Co} = 35 \, \text{γ/r}$), пониженной концентрации литофильных элементов (Rb = $10 \, \text{γ/r}$) и повышенном K/Rb = $800 \, \text{в}$ основных лавах докальдерного этапа по сравнению с основными лавами посткальдерного этапа ($\text{V} = 200 \, \text{γ/r}$; $\text{Cr} = 33 \, \text{γ/r}$; $\text{Ni} = 23 \, \text{γ/r}$; Co = 27γ/r; $\text{Rb} = ; 14 \, \text{γ/r}$; K/Rb = 570). Поскольку базальты докальдерного и посткальдерного этапов характеризуют разные центры, это может быть отражением локальных различий в исходном составе, а не направленным изменением химизма основных расплавов этого района во времени.

Сравнение кислых докальдерных и посткальдерных пород Узонско-Гейзерной депрессии показывает аналогичный ход изменения микроэлементного состава. Кислые породы докальдерного этапа Узонско-Гейзерной депрессии имеют несколько повышенное по сравнению с кислыми посткальдерными породами этого района содержание ванадия (соответственно 66 и 43 γ /г и кобальта), несколько пониженное содержание калия (1,5% против 1,7% посткальдерных дацитах). Содержание рубидия, хрома и никеля в этих породах практически одинаково.

Близость геохимических характеристик этих двух групп пород подтверждает 1-ое предположение, а слабое изменение в составе позволяет предполагать тенденции этого расплава к «покислению» в поздний этап. Две группы кислых пород Семячинской депрессии - игнимбриты главного кальдерообразующего этапа и кислые посткальдерные лавы и экструзии вулкана Бол. Семячик - показывают обратную картину. В менее кислых посткальдерных лавах вулкана Бол. Семячик содержание элементов литофильной группы несколько понижено (1,5%, Rb 28 y/m), а некоторых элементов группы железа повышено (Cr 20 γ /г, и 17 γ /m) по сравнению с игнимбритами кальдерообразующего этапа (соответственно K 1,7%, Rb 34 γ /m, Cr 13 γ /m, Ni 11

y/m). Эти различия также слишком малы, чтобы говорить об изменении состава расплавов во времени. Дисперсия содержаний микроэлементов, очевидно, определяется изменением кислотности самих пород, которая варьирует в пределах одного этапа вулканизма (породы меняются по составу от кислых андезитов до дацито-липаритов). Таким образом, можно констатировать практическую близость микроэлементного состава для основных и кислых пород разного возраста в Узонско-Гейзерной и Семячинской депрессиях.

Гаолица / Средние содержания элементов в вулканических породах Бол. Семячинской и Узонско-Гейзерной депрессий, в, γ/г, (кроме SiO₂, Na и K, которые даются в % и Au − в п ·10⁻⁷%)

	Докальдерный этап					ерный этап			Посткальдерный этап					
	Узонско-Гейзерная депрессия					Семячик		о-Гейзерная ессия		Бол. Семячик				
Элемент	Кислые	породы	Основные породы		Игним	бриты	Кислые породы		Кислые породы		Основные породы			
	сред- нее	пределы колебаний	сред- нее	пределы колебаний	сред- нее	пределы колебаний	сред- нее	пределы колебаний	сред- нее	пределы колебаний	сред- нее	пределы колебаний		
SiO ₂ Na K Rb Cs K/Rb U Th/U Li B V Cr Ni Co Ni/Co V/Ni Sc Zn Hg Sn Mo W Ag	65,3 3,5 1,5 29 400 0,85 1,00 1,2 11 — 66 8 11 10 1,1 6 5,8 — 0,040 1,8 2,5 0,07	61,9-67,4 3,4-3,6 1,4-1,6 26-39 360-610 0,70-1,0 0,80-1,25 1,1-1,2 6-14 - 35-110 4-12 4-27 5-23 0,7-1,2 4-11 - 0,036-0,046 1,2-2,2 1,5-3,6 0,25-0,27 0,06-0,08	52,0 3,3 0,7 10 	49,3—54,7 2,4—3,6 0,4—1,0 4—25 — 400—1400 0,16—0,44 0,4—0,57 1,1—2,5 5—11 — 180—450 14—120 12—60 20—62 0,3—1,7 6—21 5,2—6,2 80—111 0,032—0,066 1,4—2,6 1,0—4,5 0,05—0,08 0,04—0,22	3,1 1,7 34 1,2 500 0,75 0,85 1,1 16 33 64 13 11 5 6,6 71 0,037 1,9 3,3 0,38 0,16	2,5-3,7 1,3-2,2 12-48 0,35-1,7 300-1400 0,4-1,1 0,5-1,8 0,4-3,0 9-27 17-60 30-140 6-27 3-22 2-20 0,6-5 2-10 5,7-8,5 37-103 0,01-0,4 1,3-3,2 3,3-6 0,09-0,76 0,06-0,3 0,09-0,2	68,3 3,3 1,8 30 2,5 600 1,1 1,0 0,9 18 19 43 10 12 7 1,7 4 4,5 4,4 48	65,5-70,7 3,1-3,6 1,5-2,1 20-40 1,7-3,3 470-800 0,9-1,5 0,5-1,35 0,8-1,2 13-24 15-26 24-70 4-14 8-20 3-10 1,0-5 2-7 1,9-8,9 40-58 0.015-0,023 1,0-2,7 0.06-0.24 0,04-0,05 0,2-2,0	1,5 28 0,6 530 0,63 0,80 1,7 18 40 59 20 17 6 3 4 —————————————————————————————————	1,4-1,6 21-43 -350-700 0,3-1,0 0,5-1,34 0,8-1,6 15-22 -43-80 8-36 14-26 4-8 2-4 3-5 57-60 0,06-0,14	2,44 0,8 14 0,5 570 0,30 0,38 1,3 8 21 200 33 27 0,8 9 9,2 82 0,11 2,1 4,3 0,06 0,15 1,0			

В табл. 8 приведены данные по распространенности элементов в изученных породах района.

Таблица 8 Средняя распространённость элементов в породах основного и кислого составав γ /г (породообразующих в %)

Элемент	Средний базальт Узон-Семячинского района	Высокоглино- в зёмистый базальт	Б. Средний базальт Средний базальт	З Средний океа- нический толеит	Средний дацит Узон-Семячинского района	Дацит	о О Сайпанский - О Дацит	Средний грано- ба диорит ба	Средний гранит	Я Основные поро- оно У Вы	П. Кислые породы.
SiO ₂ ·K Rb Cs K/Rb U	52,0	51,7	48,9	49.3	66,8	65,0	79.5	66.9	71,2		
·K	0.75		0,85	0,14	1,60	1,70	1,30	$66,9 \\ 2,55$	3,47	-	_
Rb	10	<u></u>	20	1,2	30	$\frac{44}{0.22}$	15	110	145	45	200
Cs	0,5		1,0 425	· —	1,4 530	0.22	0,16	230	5	1	5
K/Rb	750	-	425	1170	53 0	390	870	230	240		10.0
U	750 0,34	<u></u>	0.60	0,10	0.83	0.62	0,85	2,7	4.8	0,3	3:
Th Th/U Sn Mo V	0.44	-	2,7 4,5 1,0 1,0 250	0,18	0.91	1,7 2,7	1.6	10	17	3	3 18 6 3
Th/U	1,3 2,0 2,8	-	4,5	1,8		2,7	1,9 0,82	3,7	3,5 3 2 40	10	6
Sn	2,0	-	1,0	- 	1,1 1,8 2,6 58 13 13	$0,39 \\ 0,49$	0,82	2 1	3	1,5	3
Mo	2.8	<u> </u>	1,0	-	2,6	0.49	0,94	1	2	1,4	1.0
V	250	250	250	290	58	68 13 5	19	75	40	200	40
Cr	40	40	200	300	13	13	4	30	10	200	25
Cr Ni Co	40 26	25	150	100	13	5	4 1 3	15	14	160	8 5
Co	31	40	48	32	9	9 0,56	3	10	2	45	5
Ni/Co	0,8	0,63	3,1	3.1 29	1,4	$0,\!56$	-	1,5	2	3,5	1,6
V/Ni Sc	9,6 8 0,14	10,0	3,1 1,7 38	29	1,4 4,5	13,6	1	5	2 2 3 6	1,2	5 3
Sc	8	40	38	60	5,9 0,11		100	14		24	3
Ag	0,14	-	0,10	_	0,11	,		0,05	0,04	0,1	0,05

Геохимические данные по породам островных дуг в настоящее время малочиленны (Taylor et al., 1968, 1969a). В последние годы отмечено существенное различие в микроэлементном составе для основных вулканических пород континентальных и океанических областей, а также районов островных дуг (см. 1бл. 8). Подобные различия объясняются обычно неоднородным составом исходного мантийного субстрата под этими регионами и особенностями механизма выплавления.

По поводу мантийного источника вещества для океанических толеитовых и континентальных базальтов сомнений в настоящее время нет. Мантийное происхождение андезитовой серии пород, развитой в пределах островных дуг, было предположено впервые Г. С. Горшковыми затем подтверждено геохимическими работами.

Происхождение известково-щелочных пород районов островных дуг и молодых орогенных областей наиболее полно рассмотрел С. Р. Тейлор.

Изучив породы известково-щелочной серии в районах с тонкой океанической корой (острова Марианские, Соломоновы и Фиджи) и сравнив их с породами той же серии, развитой на типично континентальной коре (Анды, Каскадные горд, Япония, Индонезия, Новая Зеландия), он пришел к выводу о едином источнике и механизме выплавления всей этой серии пород из вещества верхней мантии. Из редких элементов, по мнению С. Р. Тейлора, особенно показательны наряду с литофильными элементы группы железа (V, Cr, Ni, Co, а также отношения Ni/Co и V/Ni).

Средний базальт Узон-Семячинского района по содержанию элементов группы железа и Ni/Co и V/Ni практически совпадает со средним высокоглиноземистым базальтом, по С. Р. Тейлору (см. табл. 8). По ряду элементов базальт Узон-Семячинского района близок к континентальному базальту (Rb, Sn, Mo, V, Ag), но резко отличается от него содержанием Сг, Ni и особенно Ni/Co и V/Ni. Еще большие различия имеют место при сравнении с океаническим толеитовым базальтом.

Таким образом, при сравнении базальтов Узон-Семячинского района с главными типами базальтов наблюдается поразительное их сходство по микроэлементному составу с высокоглиноземистыми базальтами, которые, согласно С. Р. Тейлору, являются мантийными выплавками. Очевидно, базальты Узон-Семячинского района были выплавлены также в пределах верхней мантии.

В своих работах С. Р. Тейлор показал тесную геохимическую связь между породами всей щелочноземельной серии, начиная от базальтов, кончая дацитами, и на основании данных по абсолютным концентрациям отдельных элементов и их отношений сделал предположение о непосредственном мантийном источнике и для кислых пород. По С. Р. Тейлору, кислые расплавы дацитового состава выплавляются также в пределах верхней мантии, но в несколько иных физико-химических условиях. Мантийное происхождение дацитов подтверждается, согласно С. Р. Тейлору, и сравнением микроэлементного состава этих пород с соответствующими по кислотности породами коры (гранодиоритами и гранитами).

Концентрации Rb, V, Cr и Co весьма сходны для дацитов Узон-Семячинского района и дацита с Соломоновых островов (см. табл. 8).

Несколько отличаются эти группы пород содержаниями Ni и соответственно Ni/Co и V/Ni. Для Узон-Семячинских дацитов, в связи с более высокой концентрацией никеля, Ni/Co-отношение выше (1,4), чем в даците Соломоновых островов (0,56), а V/Ni-отношение соответственно ниже (4,5 против 13,6). Подобное различие, как и некоторая разница в содержании урана, тория, олова и молибдена, является местным признаком. Для дацитов Узон-Семячинского района среднее выводилось по 15 образцам, а дацит Соломоновых островов представлен одним образцом. Эти дациты имеют большую близость в геохимической характеристике и резко отличаются от кислых пород коры (гранодиоритов и гранитов). Кислые вулканиты всех этапов вулканизма, развитых в раине Узонско-Гейзерной и Семячинской депрессиях, очевидно, являются производными глубинного мантийного вещества.

Относительно механизма образования кислых расплавов и генетического их родства с базальтовыми проявлениями данного района в настоящее время трудно дать однозначный ответ.

С. Р. Тейлор показал малую вероятность происхождения андезитов и дацитов из высокоглиноземистых базальтов путем фракционной кристаллизации. Он основывался главным образом на одинаковом содержании V, близких Ni/Co V/Ni-отношениях в высокоглиноземистых базальтах и андезитах, а также присутствии или слабо проявленной степени концентрации литофильных элементов в более кислых разностях пород. Это подтверждалось сравнительно малыми объемами базальтового материала по сравнению с андезитами в пределах серии. При сравнении геохимических данных базальтов и дацитов Узон-Семячинского района (андезиты здесь отсутствуют) обращает на себя внимание закономерное изменение концентраций как литофильной группы элементов, так и элементов группы железа (V, Cr, Ni, Co) от основных пород к кислым. Такое изменение обычно наблюдается при фракционной кристаллизации, при выплавлении основных и кислых расплавов из близкого по составу исходного материала в породах должна иметь место та же самая эволюция содержали микроэлементов. В данном случае необходимо учитывать большой объем кислого материала, сопоставимого по масштабам проявления с базальтовым, все это делает

обе гипотезы (фракционной кристаллизации базальтов или самостоятельнрго выплавления кислых расплавов из мантии) приблизительно равноценными.

Основные и кислые расплавы имеют в качестве источника вещество верхней мантии и в них трудно уловить влияние пород коры. У дацитов Узон-Семячиного района и Соломоновых островов кроме общих черт, имеются различия, объясняющиеся региональными особенностями.

Сайпанский дацит имеет высокое содержание Si0₂ (79%) и низкую концетрацию калия, рубидия,

аномалия описана для Курило-Камчатской зоны Л. Л. Леоновой и др. (1970, 1971). Курильские острова и Камчатка характеризуются пониженной концентрацией урана и особенно тория, низким Th/U-отношением. Кроме отмеченных особенностей характерны пониженное содержание скандия, относительно

олова, молибдена, редкоземельных элементов и высокое K/Rb отношение (см. табл. 8). Региональная

О концентрациях Hg, Zn и Au в породах островных дуг данных нет. Сравненение их со средними данными для основных и кислых пород (по A. П. Виноградову) показывает несколько повышенное содержание ртути в основных породах более низкое содержание золота в кислых и основных породах.

высокая концентрация олова, молибдена и бора.