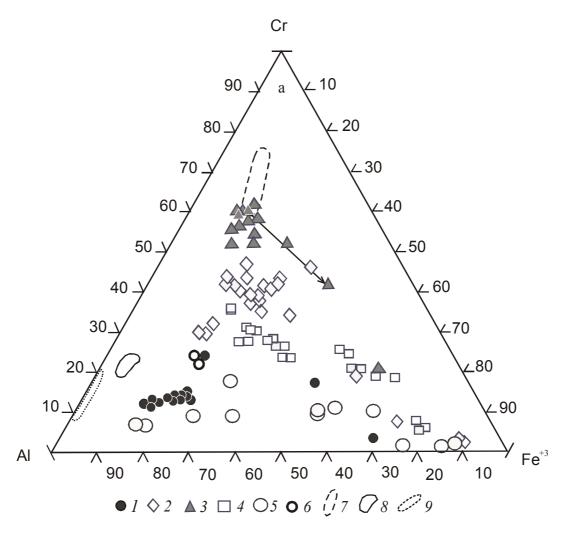
# ШПИНЕЛИ КАРЫМСКОГО ВУЛКАНИЧЕСКОГО ЦЕНТРА: ПЕТРОГЕНЕТИЧЕСКАЯ ИНТЕРПРЕТАЦИЯ.

## Е.Н. Гриб

Институт вулканологии и сейсмологии ДВО РАН, Петропавловск-Камчатский, 683006 e-mail: gen@kscnet.ru

Карымский вулканический центр (КВЦ) расположен на центральном участке Восточного вулканического пояса (ВВП) Камчатки и представляет собой сложное структурное образование плиоцен-четвертичного возраста. Для него характерно ритмичное развитие вулканизма, включающее длительные начальные этапы преимущественно базальтового вулканизма, предполагаемые периоды покоя и заключительные вспышки кислого эксплозивного вулканизма с образованием телескопированных кольцевых структур.


01.01.1996 г. в Карымском вулканическом центре произошло извержение базальтовой тефры в северной части озера Карымское, заполняющего кальдеру Академии Наук. Продукты извержения были представлены высокоглиноземистыми толеитовыми низкои умереннокалиевыми базальтами с Pl-Ol-Cpx ассоциацией минералов-вкрапленников (оливинсодержащие базальты) [5]. В разрезах северного борта озера обнаружены слои голоценовой базальтовой тефры, которые образовались, очевидно, в результате событий, подобных произошедшему в 1996 г. и характеризуются аналогичной минеральной ассоциацией. Для одного из слоев базальтовой тефры на уровне трехметровой озерной террасы тефрохронологическим методом была установлена дата извержения – 4800 л.н. (в дальнейшем она будет именоваться тефра «4800») [2]. В виде дайки (предположительно голоценового возраста) ОІ-содержащие базальты встречены в северо-западном борту кальдеры Карымской. Сходные минеральные ассоциации характерны также для докальдерных базальтов вулканов Стена (северный сектор структуры) и Дитмара (южный сектор структуры), тогда как все более поздние внутрикальдерные вулканические постройки КВЦ, за исключением вулканов Малосемячикской группы [14], сложены известково-щелочными двупироксеновыми базальтами. В базальтах вулкана Однобокий оливин отмечен, в основном, в ассоциации с анортитом и принадлежит к дезинтегрированным фрагментам алливалитовых включений [8, 9].

Изучение состава шпинелей явилось частной задачей при оценке степени комагматичности ОІ-содержащих базальтов, которые периодически проявлялись в истории развития Карымского вулканического центра начиная с плиоцен-нижнечетвертичного возраста вплоть до 1996 г. с целью установить степень их генетического сродства и оценить возможный состав источника первичных для них расплавов [6].

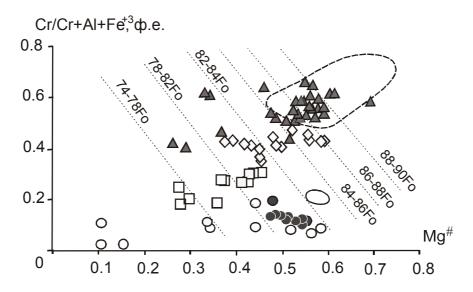
## Состав шпинелей

Шпинели в базальтах встречаются в основном в виде твердофазных включений в оливинах, клинопироксенах и плагиоклазах, реже - в виде дочерних фаз в частично раскристаллизованных расплавных включениях. Размеры их варьируют в пределах 5-30 мкм. Изредка встречаются и более крупные выделения. Форма зерен овальная и октаэдрическая. В оливиновых сростках из базальтов тефры «4800» в межзерновом пространстве встречены единичные зерна шпинели размером до 70-100 мкм. Далее будут рассмотрены, в основном, составы включений шпинелей в оливинах, и в меньшей степени в анортитах. Их отличает широкий диапазон и характерный для каждого из объектов исследований ряд распределения составов - от хромитов, хромпикотитов, через субалюмохромиты до герцинитов с одной стороны, и от субферрихромпикотитов, через

субферриалюмохромиты до хроммагнетитов и хром- содержащих титаномагнетитов, с другой (рис. 1, табл. 1).



**Рис. 1.** Соотношение Al-Cr-Fe<sup>+3</sup> в твердофазных включениях шпинели в оливинах. I — вулканический массив Стена-Малый Семячик; 2 - вулкан Дитмара; 3 - базальты «4800»; 4 - базальты 1996 г.; 5 - дайка в борту кальдеры Карымская; 6 - глиноземистая шпинель в оливинах щелочных базальтов в нижней части разреза щапинской свиты [3]. Поля: 7 — хромистые шпинели в оливинах из лав вулкана Ключевской [16]; 8 — шпинели в меловых щелочных базальтах полуострова Камчатский Мыс [13]; 9 — шпинели в ксенолитах лерцолитов из базанитов Вьетнама, данные А.В. Колоскова. Стрелкой показано изменение состава зерен шпинели в оливиновом сростке в базальте «4800»


Выявлено различие в составе шпинелей в оливинах из базальтов северного и южного секторов структуры. Редкие твердофазные включения шпинели в оливинах Fo78-82 базальтов вулканов Стена и Малый Семячик представлены глиноземистыми разностями: глиноземистость ( $Al^{\#}$ ) их варьирует в пределах 0.61-0.72, магнезиальность ( $Mg^{\#}$ ) - 0.47-0.54, хромистость - ( $Cr^{\#}$ ) 0.15-0.20. Содержание в них  $Al_2O_3$  составляет 32.5-41.5%,  $TiO_2$  - 0.37-0.59%. Еще более глиноземистые твердофазные включения герцинитов ( $Al_2O_3$  44-47%,  $TiO_2$  - 0.39-0.71%) были определены в фенокристаллах анортита из базальта дайки в северо-западном борту кальдеры Карымская. На диаграмме они занимают самую нижнюю позицию вдоль стороны Al -  $Fe^{+3}$ , тяготея к области максимума алюминия. В твердофазных включениях шпинели в более поздних по времени кристаллизации субфенокристаллах оливина, наряду с низкой хромистостью и уменьшением глиноземистости, происходит увеличение содержания расчетного окисного железа.

**Таблица 1.** Представительные составы включений шпинели (мас. %) во вкрапленниках из базальтов Карымского вулканического центра

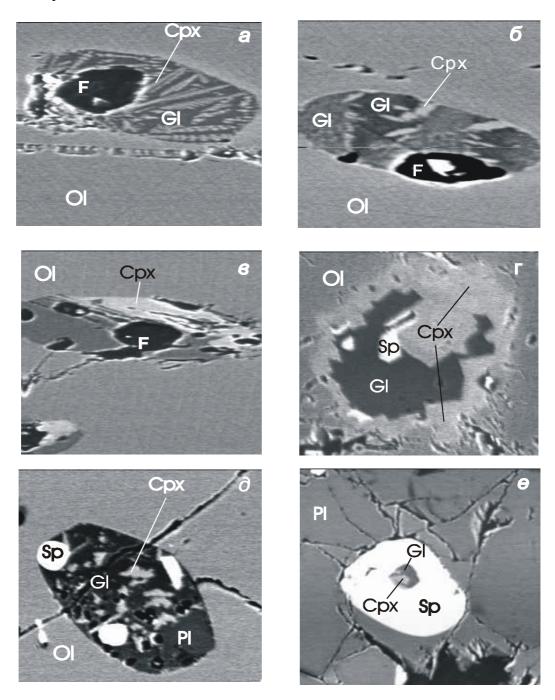
| Компо-<br>ненты  | 1     | 2     | 3      | 4    | 5    | 6    | 7 ц   | 8 кр  | 9     | 10    | 11   | 12   |
|------------------|-------|-------|--------|------|------|------|-------|-------|-------|-------|------|------|
| TiO <sub>2</sub> | 1.4   | 0.8   | 0.5    | 1.6  | 1.1  | 0.6  | 0.4   | 2.3   | 0.5   | 0.3   | 1.6  | 1.7  |
| $Al_2O_3$        | 26.3  | 39.3  | 46.7   | 26.8 | 18.7 | 20.0 | 13.4  | 8.9   | 14.0  | 15.4  | 10.6 | 20.4 |
| $Fe_2O_3$        | 25.2  | 15.5  | 13.3   | 24.5 | 22.4 | 13.5 | 10.0  | 28.8  | 18.0  | 8.9   | 42.4 | 22.8 |
| FeO              | 22.4  | 20.1  | 18.7   | 21.9 | 20.6 | 17.1 | 24.4  | 27.5  | 20.7  | 14.8  | 25.0 | 22.0 |
| $Cr_2O_3$        | 15.5  | 12.6  | 6.7    | 14.0 | 26.7 | 36.0 | 46.4  | 27.8  | 37.7  | 48.1  | 14.9 | 22.9 |
| MgO              | 9.6   | 12.2  | 13.6   | 9.6  | 9.5  | 11.7 | 6.8   | 5.8   | 8.7   | 12.9  | 5.2  | 9.1  |
| MnO              | 0.3   | 0.2   | 0.0    | 0.2  | 0.20 | 0.3  | 0.4   | 0.3   | 0.4   | 0.5   | 0.2  | 0.0  |
| NiO              | 0.0   | 0.0   | 0.0    | 0.00 | 0.00 | 0.00 | 0.0   | 0.0   | 0.0   | 0.0   | 0.0  | 0.0  |
| ZnO              | 0.0   | 0.1   | 0.0    | 0.00 | 0.00 | 0.00 | 0.0   | 0.0   | 0.0   | 0.0   | 0.0  | 0.0  |
| Сумма            | 100.7 | 100.8 | 99.5   | 98.6 | 99.2 | 99.2 | 101.8 | 101.4 | 100.0 | 100.9 | 99.9 | 98.9 |
| Fo (An)          | 78.5  | 79.5  | (90.0) | 80.7 | 80.0 | 84.2 |       |       | 79.1  | 88.7  | 74.3 | 80.9 |

Примечание. 1-2, 4-12 – включения шпинелей во вкрапленниках оливина. 3 - включение шпинели во вкрапленнике анортита. 1-2 - вулкан Стена; 3-4 - дайка в борту кальдеры Карымской, 5-6 - вулкан Дитмара; 7-10 - тефра «4800», 7-8 - субфенокристалл шпинели; 11-12 — тефра «1996». Fo (An) — форстеритовый и анортитовый миналы вкрапленников оливина и плагиоклаза с включениями шпинелей.

В базальтах южного сектора Карымского вулканического центра (вулкан Дитмара, тефра «4800») магнезиальные оливины (Fo 85-89) содержат хромистые шпинели. Наиболее высокие содержания хрома отмечены в хромитах, хромпикотитах в оливинах из базальтов «4800»: хромистость ( $Cr^{\sharp}$ ) 0.51-0.7, магнезиальность ( $Mg^{\sharp}$ ) 0.48-0.69. Содержание оксида хрома в них достигает 43-51%,  $TiO_2$  - 0.27-0.64%. Они образуют на диаграмме (см. рис. 1, 2) компактный рой точек составов, что предполагает их кристаллизацию на определенном этапе и в относительно стабильных условиях. В более железистых оливинах при снижении  $Mg^{\sharp}$  и содержаний оксида хрома, значение хромистости шпинели практически не изменяется. Исключение составляют низкомагнезиальные, низкохромистые титан-содержащие шпинели из железистых вкрапленников оливина (рис. 2).



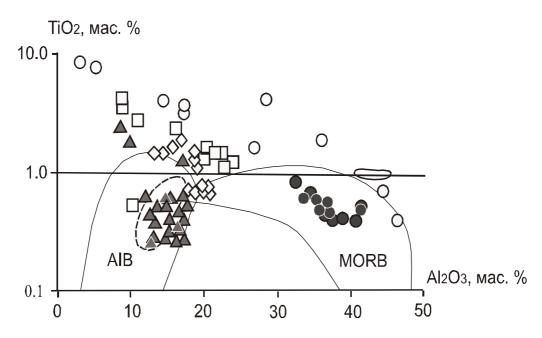
**Рис. 2.** Соотношение хромистости и магнезиальности ( $Mg^{\sharp}$ ) шпинели. Условные обозначения на рис. 1. Тонкие пунктирные линии – изоплеты содержания Fo во вмещающих оливинах.  $Cr^{\sharp} = Cr/Cr + Al + Fe^{+3}$ ,  $Mg^{\sharp} = Mg/Mg + Fe^{+2}$ 


Наиболее хромистые шпинели базальтовой тефры «4800» тяготеют к полю шпинелей из магнезиальных оливинов базальтов вулкана Ключевской [16]. Зерна шпинели из межзерновых зон оливиновых сростков (тефра «4800») зональны. Ядра зерен имеют хромистый состав, а в краевых зонах кристаллов наблюдается увеличение содержания железа. Шпинели в оливинах из базальтов вулкана Дитмара представлены субалюмо-хромитами. Со снижением магнезиальности оливинов составы шпинели эволюционируют в сторону уменьшения концентраций  $Cr_2O_3$  (от 36.0 до 26.7 мас.%),  $Al_2O_3$  (от 21.3 до 13.5 мас.%) и MgO (от 12.7 до 7.8 мас.%) при одновременном увеличении их железистости (от 33.3 до 54 мас.%) и концентрации  $TiO_2$  (от 0.64 до 2.04 мас.%).  $Cr^{\#}$  шпинели снижается при этом незначительно - от 0.51 до 0.40 мас.%. В оливинах из базальтов извержения 1996 г. шпинели представлены еще более глиноземистыми разностями - субферриалюмохромитами. Тренд их эволюции, связанный с обогащением оксидами железа и титана непрерывный, что свидетельствует о постепенном обогащении расплава этими компонентами.

В оливинах из рассматриваемых базальтов наряду с твердофазными включениями шпинели встречаются сингенетичные с ними частично раскристаллизованные включения расплава (рис. 3). Дочерние кристаллические фазы в них представлены высокоглиноземистым, высокотитанистым клинопироксеном (фассаитом) и, реже, шпинелью. Наиболее глиноземистая шпинель (плеонаст) обнаружена во включении расплава в оливине из магнезиального базальта вулканического массива Стена-Малый Семячик (рис.  $3\varepsilon$ ). Содержание  $Al_2O_3$  в плеонасте достигает 54.13 мас.%. В базальтах 1996 г. во включениях расплава (рис.  $3\varepsilon$ ) совместно с микролитами фассаита распространены субалюмохроммагнетиты ( $Al_2O_3$  6-9 мас.% и  $Cr_2O_3$  5-12мас.%). Иногда зерна пересекают границы расплавных включений, что указывает на их нахождение в виде фазузников.

## Обсуждение результатов

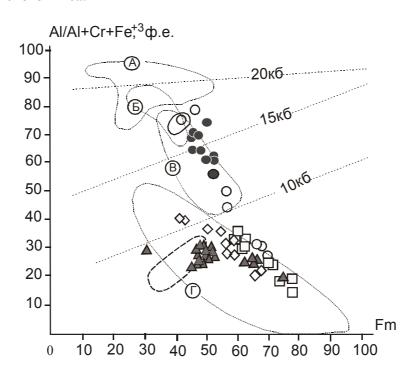
Исследования состава породообразующих минералов Ol-содержащих базальтов различных этапов развития КВЦ показывают, что для них характерны близкие эволюционные тренды, свидетельствующие о генетическом родстве исходных базальтоидных расплавов и общности процессов их кристаллизации. Направления трендов согласуются с представлениями о фракционной кристаллизации при снижении температуры, как одного из основных параметров, определяющих направленность эволюции расплавов. Анализ сосуществующих кристаллических фаз (сростков и твердофазных включений в минералах) показывает, что этот процесс связан с котектической минеральной ассоцианией Pl-Ol-Cpx [6].


Наиболее информативным в изученных базальтах оказался состав твердофазных включений шпинели в оливинах. В базальтах южного сектора в оливинах встречаются в основном в различной степени хромистые шпинели, включающие в себя хромиты, хромпикотиты, субалюмохромпикотиты. Наиболее высокохромистая шпинель определена в магнезиальных оливинах (Fo 86-89) из базальтовой тефры «4800». По уровню хромистости ( $Cr^{\#}$  0.57-0.68), степени окисленности ( $FeO/Fe_2O_3$  1.8-2.5) и низкой концентрации TiO<sub>2</sub> (0.27-0.4мас.%) она близка хромистым шпинелям вулкана Ключевской (см. рис. 1-2), для которого установлена кристаллизация первичных пикритовых расплавов на уровне верхней мантии [16]. Компактное обособление точек составов шпинелей на диаграммах свидетельствует о стабильных условиях кристаллизации расплава. Температуры их кристаллизации рассчитаны на основании Ol-Sp геотермометра [18] в пределах  $1300^{\circ}$ C при фугитивности кислорода – 6.35 / +1.17 QFM. Парагенезис Ol-Sp, состав которых соответствовал бы мантийным уровням [17], обнаружен не был, однако, высокое значение  $\operatorname{Cr}^{\#}$  ликвидусной шпинели свидетельствует о расположении источника первичных, близких к пикритоидным, магм на границе коры и верхней мантии. Такие параметры отражают обстановку магмообразования во фронтальных вулканических зонах островных дуг [18]. Хромистые, и в то же время, более глиноземистые и железистые по составу шпинели базальтов вулкана Дитмара и базальтовой тефры 1996 г. кристаллизовались, вероятно, из более дифференцированных и более обогащенных железом и титаном расплавов.



**Рис. 3.** Микрофотографии расплавных включений: в оливинах (a-e, вулкан Стена, d, тефра 1996 г.); и анортите (e, дайка в борту кальдеры Карымская). Индексы кристаллических фаз: Ol – оливин-хозяин, Срх – дочерняя кристаллическая фаза клинопироксена (фассаит), Gl – остаточное стекло, F – вскрытая полость газового пузырька, Sp – шпинель, дочерняя кристаллическая фаза, Pl – в (d), дочерняя фаза, битовнит, в (e) – хозяин, анортит. Размер кадра: a-e – 50 мкм, d – 100 мкм, e – 200 мкм.

Особый интерес представляет обнаружение включений высокоглиноземистой (33-47%  $Al_2O_3$ ) шпинели (герцинита) в оливине ( $Mg^{\#}$  78-81) базальтов вулканов Стена и Малый Семячик и в анортите базальта дайки в северо-западном борту кальдеры Карымская. Высокоглиноземистая шпинель не характерна для надсубдукционных остро-


водужных магм и до этого не определялась в лавах других четвертичных вулканов Восточного вулканического пояса, как среди субфенокристаллов, так и твердофазных включений в минералах. Высокоглиноземистая шпинель в островодужных системах встречается только в ассоциации с внутриплитным геохимическим типом базальтов и связана с эволюцией относительно глубинных первичных расплавов [10]. По уровню глиноземистости  $(Al^{\#} 0.6-0.78)$  шпинели в оливинах и анортитах базальтов северного сектора КВЦ близки шпинелям внутриплитных щелочных позднемиоцен-плиоценовых базальтов (щапинская свита) восточных отрогов Валагинского хребта, бассейн реки Левая Жупанова [3], щелочных меловых базальтов (обр. № D-213-17) полуострова Камчатский Мыс [13], а также шпинелям, встречающимся в ультрамафитовых ксенолитах из островодужных базальтов [10] (см. рис. 1). В то же время, от глиноземистых шпинелей щелочных лав они отличаются пониженным содержанием титана и хрома. а от шпинелей в ультраосновных ксенолитах - низкой магнезиальностью и повышенной концентрацией железа. В [20] приведена классификационная диаграмма зависимости Al<sub>2</sub>O<sub>3</sub> и TiO<sub>2</sub> для низкотитанистых мантийных шпинелей, на которой шпинели, кристаллизующиеся в различных геодинамических обстановках, образуют обособленные поля (рис. 4). На этой диаграмме высокоглиноземистые герциниты базальтов северного сектора КВЦ находятся в поле шпинелей базальтов срединно-океанических хребтов (MORB), в то время как высокохромистые шпинели тефры «4800», как и вулкана Ключевского - в поле шпинелей базальтов островных дуг (ІАВ). По [20] для шпинелей базальтов тыловых зон островных дуг характерны как хромистые, так и глиноземистые шпинели.



**Рис. 4.** Соотношение  $TiO_2$ - $Al_2O_3$  в низкотитанистых мантийных шпинелях по [20]. Условные обозначения на рис. 1. Тонкими линиями обозначены поля шпинелей, кристаллизующихся в островодужной геодинамической обстановке (IAB) и срединно-океанических хребтов (MORB)

Согласно [10], глиноземистость ( $AI^{\#}$ ) шпинели определяется давлением. На диаграмме корреляции  $AI^{\#}$  и степени железистости шпинелей из ультрамафитовых ксенолитов, обнаруженных в вулканических породах различных геодинамических обстановок (рис. 5), глиноземистые шпинели базальтов вулканов Стена и Малый Семячик попадают в поле шпинелей ксенолитов верлит-пироксенитового состава из вулканитов внутриплитного геохимического типа. Кристаллизация таких шпинелей происходит в области давлений 12-17 кбар, что соответствует глубинам 35-50 км. Наиболее глиноземистые из них, в том числе твердофазные включения шпинели в анортите (базальт дай-

ки в борту кальдеры Карымской), располагаются в поле шпинелей из щелочных базальтов Камчатского мыса.



**Рис. 5.** Диаграмма зависимости глиноземистости (AI<sup>#</sup>) и железистости (Fm) шпинелей, кристаллизующихся в различных геодинамических обстановках по [10]. Условные обозначения на рис. 1. Поля шпинелей из различных типов ксенолитов в базальтах Камчатки и других районов: A - лерцолитов в базанитах Вьетнама, Б - гарцбургитов и пироксенитов вулкана Харченского, B - верлит-пироксенитовой ассоциации района вулкана Бакенинг,  $\Gamma$  - гарцбургитов и пироксенитов вулкана Ключевского; прямые линии - предполагаемые границы полей барофильности; оценка произведена с использованием шпинель-пироксенового геобарометра [21].  $AI^{\#} = AI/AI + Cr + Fe^{+3}$ , Fm = Fe/Fe + Mg

Как было отмечено, базальты северного сектора КВЦ, в оливинах которых встречаются высокоглиноземистые шпинели, по составу минеральных ассоциаций относятся к базальтам габброидного типа, кристаллизация которых происходит на небольших глубинах, а близкие эволюционные тренды составов породообразующих минералов разновозрастных базальтов северного и южного секторов свидетельствуют об их генетическом родстве и принадлежности к типичным островодужным образованиям. Учитывая эти противоречия - островодужный характер магм и «внутриплитный» тип шпинелей, можно предположить реликтовую природу высокоглиноземистых шпинелей из базальтов северного сектора КВЦ. Они могут отражать состав протокристаллических фаз и расплавов более ранних этапов магмообразования в районе КВЦ, принадлежащих отличному от островодужного геодинамическому режиму.

Другим важным фактором, способствующим кристаллизации высокоглиноземистой шпинели может являться повышенная глиноземистость расплава. В работе [20] по результатам экспериментальных исследований, в том числе и с расплавными включениями, установлена зависимость глиноземистости шпинелей от глиноземистости расплава. Низкотитанистые шпинели с содержанием глинозема 30-40%, согласно этим данным, могут кристаллизоваться из примитивных расплавов с содержанием  $Al_2O_3$  в пределах 14-17%. Высокая глиноземистость базальтов Малосемячикского вулканического центра была установлена еще предшествующими исследованиями [1, 14]. В [14] установлена «анортозитовая тенденция» в эволюции магм. Следует отметить, что показателем высокой глиноземистости исходных расплавов северного сектора КВЦ является в данном случае и состав дочерних кристаллических фаз в частично раскристаллизованных рас-

плавных включениях в оливинах [6]. Они представлены высокоглиноземистыми фазами, а именно, фассаитом и шпинелью (плеонастом), содержащим до 55 %  $Al_2O_3$ . В подобных включениях в оливинах из базальтов южного сектора также присутствует фассаит, но шпинелиды имеют промежуточный, более железистый состав.

Согласно [19] значительное повышение содержания  $Al_2O_3$  в расплавах может быть связано с ассимиляцией корового плагиоклаза, а кристаллизация высокоглиноземистой шпинели из пересыщенных плагиоклазовым компонентом расплавов возможна при температурах выше ликвидуса плагиоклаза. Источником плагиоклаза могут быть коровые очаги предшествующих этапов магмообразования в районе КВЦ, например, мегаплагиофировые лавы (и расплавы) характерные для щапинской свиты верхнемиоценплиоценового возраста [3].

Частично раскристаллизованные включения с дочерними фазами фассаита и высокоглиноземистой шпинели были обнаружены также в оливинах с Mg<sup>#</sup> 86-91 из авачитов (высокомагнезиальных пород в постройке Авачинского вулкана) [12].

Показательно, что фассаит и высокоглиноземистая шпинель в качестве породообразующих минералов кристаллизуются в щелочных внутриплитных базальтах мелового возраста на Камчатском мысе [13], а также в щелочных позднемиоцен-плиоценовых базальтах Валагинского хребта [3]. Структура Валагинского хребта расположена западнее вулканов Стена и Малый Семячик. Следует отметить, что базальтоиды повышенной щелочности и титанистости, свойственные этой структуре, зафиксированы в плиоценовом фундаменте центральной части Восточного вулканического пояса Камчатки, в частности, Узон-Гейзерной вулкано-тектонической депрессии [7] и Карымского вулканического центра — гора Стол [4]. На диаграмме Al-Cr-Fe<sup>+3</sup> (см. рис. 1) глиноземистые шпинели (два анализа) в оливинах Fo 83-85 из базальтов нижней части разреза щапинской свиты близки составам твердофазных включений шпинели в оливине Fo 85 из базальтов докальдерного вулкана Стена [14]. При этом состав вкрапленников фассаита из «щапинских» базальтов отличается от фассаита (дочерние фазы) в расплавных включениях в оливине исследуемых базальтов, в основном, более высоким содержанием титана [3].

О.Н. Волынцом с соавторами [3] было установлено, что щелочные базальты внутриплитного типа позднемиоценового возраста (щапинская свита) распространены на Восточной Камчатке достаточно широко, а во времени отмечено изменение их геохимических характеристик. Так базальты верхней части разреза щапинской свиты попадают в поле базальтов окраинно-континентальных рифтов, а верхнеплиоценчетвертичные вулканиты собственно Восточного вулканического пояса (докальдерный этап развития КВЦ) уже имеют типично островодужные геохимические особенности. На основе анализа геохимических данных было сделано предположение, что в ходе становления Восточного вулканического пояса происходила смена геодинамических режимов с изменением условий генерации и глубины зарождения магм, а также с последовательным смещением очагов магмообразования с глубоких на более высокие уровни. В связи с этим оливины и анортиты базальтов северного сектора Карымского вулканического центра, содержащие твердофазные включения высокоглиноземистой шпинели, могут представлять собой протокристаллические фазы и расплавы магм промежуточных коровых магматических очагов предшествующего этапа щелочного магматизма в районе КВЦ, вовлеченных островодужными магмами в процесс извержения. Пространственная сопряженность района развития щелочных базальтов (верховья реки Левая Жупанова) и примитивных базальтов докальдерного вулкана Стена, а также их проявление, сближенное в масштабе геологического времени, предполагают такую возможность.

В последние годы при изучении расплавных включений в минералах базальтов Восточного вулканического пояса (в том числе Карымского центра) были обнаружены щелочные (нефелин-нормативные) расплавы с повышенным содержанием натрия и ти-

тана [11, 12, 15]. В этой связи находки высокоглиноземистых минералов в расплавных включениях в оливинах (и анортитах) Карымского вулканического центра, характерных для щелочных расплавов, подтверждают представление о том, что на ранних этапах развития Восточного вулканического пояса происходило формирование К-Na щелочных магматических расплавов. Присутствие в лавах островодужных вулканических пород высокобарических глиноземистых разностей шпинелей, характерных для внутриплитных геодинамических обстановок, свидетельствует о более тесных генетических связях между этими типами [10].

Автор выражает благодарность А.Р. Дуниной-Барковской за помощь в оформлении графического материала.

Работа выполнена при финансовой поддержке проекта РФФИ № 08-05-00453.

#### СПИСОК ЛИТЕРАТУРЫ

- 1. *Бабанский А.Д., Рябчиков И.Д., Богатиков О.А.* Эволюция щелочно-земельных магм. М.: Наука, 1983. 94 с.
- 2. *Белоусов А.Б., Белоусова М.Г., Муравьев Я.Д.* Голоценовые извержения в кальдере Академии Наук и возраст стратовулкана Карымский (Камчатка) // Докл. РАН. 1997. Т. 354. № 5. С. 648-652.
- 3. *Волынец О.Н., Успенский В.С., Аношин Г.Н. и др.* Эволюция геодинамического режима магмообразования на Восточной Камчатке в позднем кайнозое (по геохимическим данным) // Вулканология и сейсмология. 1990. № 5. С. 14-28.
- 4. Вулканический центр: строение, динамика, вещество (Карымская структура) // Отв. ред. Ю.П. Масуренков. М.: Наука, 1980. 292 с.
- 5. *Гриб Е.Н.* Петрология продуктов извержения 2-3 января в кальдере Академии Наук// Вулканология и сейсмология. 1997. № 5. С. 71-97.
- 6. *Гриб Е.Н.* Минералогические особенности оливин-содержащих базальтов Карымского вулканического центра // Вестник КРАУНЦ. Науки о Земле. № 2. Выпуск 10.2007. С. 17-33.
- 7. *Гриб Е.Н., Перепелов А.Б., Леонов В.Л.* Геохимия вулканических пород Узон-Гейзерной депрессии (Камчатка) // Вулканология и сейсмология. 2003. № 4. С. 11-28.
- 8. *Гриб Е.Н., Леонов В.Л.*. Эволюция магматических очагов кальдер южного сектора Карымского вулканического центра. Часть І. Геология, строение и состав пирокластических потоков // Вулканология и сейсмология. 2004. № 4. С. 21-40.
- 9. *Гриб Е.Н., Леонов В.Л.* Эволюция магматических очагов кальдер южного сектора Карымского вулканического центра. Часть II. *PTF* условия кристаллизации игнимбритообразующих расплавов, эволюция магматизма // Вулканология и сейсмология. 2004. № 5. С. 23-37.
- 10. Колосков А.В., Пузанков М.Ю., Пирожкова Е.С. Включения ультрамафитов в базальтоидах островных дуг: к проблеме состава и генезиса переходного слоя «коромантийной смеси» в островодужных системах // Геодинамика и вулканизм Курило-Камчатской островодужной системы. Петропавловск-Камчатский: ИВГиГ ДВО РАН, 2001. С.123-152.
- 11. *Наумов В.Б., Толстых М.Л., Гриб Е.Н. и др.* Химический состав, летучие компоненты и элементы примеси расплавов Карымского вулканического центра (Камчатка) и вулкана Головнина (о. Кунашир) по данным изучения включений в минералах // Петрология. 2007. Т. 15. № 6. С. 563-581.
- 12. *Портинягин М.В., Миронов Н.Л., Матвеев С.В. и др.* Петрология «авачитов» высокомагнезиальных базальтов Авачинского вулкана (Камчатка). II. Расплавные включения в оливине // Петрология. 2005. Т. 13. № 4. С. 358-388.
- 13. *Савельев Д.П., Философова Т.М.* Минералогические особенности меловых щелочных базальтов полуострова Камчатский мыс. (Восточная Камчатка) // Вестник Краунц. Серия Наук о Земле. № 5. С. 94-101.
- 14. Селянгин О.Б. Петрогенезис базальт-дацитовой серии в связи с эволюцией вулканоструктур. М.: Наука, 1987. 148 с.

- 15. *Толстых М.Л., Наумов В.Б., Озеров А.Ю. и др.* Состав магм извержения 1996 г. Карымского вулканического центра (Камчатка) по данным изучения расплавных включений // Геохимия. 2001. № 5. С. 498-509.
- 16. *Хубуная С.А.*, *Богоявленский С.О.*, *Новгородцева Т.Ю. и др.* Минералогические особенности магнезиальных базальтов как отражение фракционирования в магматической камере Ключевского вулкана // Вулканология и сейсмология. 1993. № 3. С. 46-68.
- 17. *Arai S.* Compositional variation of olivine-chromian spinel in Mg-rich magmas as a guite to their residual spinel peridotites // J. of Volcanol. and Geoth. Res. 1994. V. 114. P. 279-293.
- 18. Ballhaus C., Berry R., Green D. High-pressure experimental calibration of the olivine-ortopyroxene-spinel oxygen geobarometer implications for the oxidation state of the upper mantle // Contrib. Mineral. Petrol. 1991. V. 107. P. 27-40.
- 19. Danyshevsky L., Perfit M., Eggins S., Faloon T. Crustal origin for coupled "ultra-depleted" and "plagioclase" signatures in MORB olivine-hosted melt inclusion: evidence from the Siqueirous Transform Fault, East Pasific Rise // Contrib. To Mineral. And Petrol. 2003. V. 144. P. 616-637.
- 20. *Kamenetsky V., Crawford A., Meffre S.* Factors Controlling Chemistry of Magmatic Spinel: an Empirical Study of Associated Olivine, Cr-spinel and Melt Inclusions from Primitive Rocks // J. of Petrol. 2001. V. 42. № 4. P. 655-671.
- 21. Mercier J. Single-pyroxene thermobarometry // Tectonophysics. 1980. V.70. P. 1-3.

# SPINELS FROM THE KARYMSKY VOLCANIC CENTER: PETROGENETIC INTERPRETATION

### E.N. Grib

Institute of Volcanology and Seismology FEB RAS, 683006 Petropavlovsk-Kamchatsky, e-mail: gen@kscnet.ru

This paper provides the results of studying solid-phase spinel inclusions in olivines and anorthites of spinel – bearing basalts from the Karymsky volcanic center. The analysis revealed different composition of spinels in basalts from northern and southern sector of the structure. We suggest that high-aluminous spinels are relict by origin.