РТУТЬ В ХЕМОГЕННЫХ ОСАДКАХ И ТЕРМАЛЬНЫХ ГЛИНАХ ГРЯЗЕВЫХ КОТЛОВ КИХПИНЫЧСКОГО ДОЛГОЖИВУЩЕГО ВУЛКАНИЧЕСКОГО ЦЕНТРА (КДВЦ)

О.Ф. Карданова

Институт вулканологии и сейсмологии ДВО РАН, Петропавловск-Камчатский, 683003; e-mail: kof@kscnet.ru

Данная работа является продолжением исследований автора в районе КДВЦ. Ранее рассматривались состав и условия образования хемогенных осадков на термальных полях этого центра [6, 7]. Работа проводилась в связи с исследованиями источников рудного вещества, механизмов его переноса и условий минерало-рудообразования. В этой статье рассматриваются особенности поведения ртути в различных типах минеральных осадков КДВЦ.

Известно, что ртуть попадает в атмосферу при извержениях вулканов, из горячих источников и фумарол. Из атмосферы ртуть удаляется атмосферными осадками, происходит растворение Нд в водах гидросферы, синтез ряда ртутных соединений (сульфиды и хлориды Нд), сорбция ртутных паров коллоидными осадками (гидроокислами Мп, Fe, Al и др.) [15]. Важнейшую роль в геохимии ртути играет миграция в газообразном состоянии и в водных растворах. В большинстве систем Нд рассеяна и только в гидротермах происходит ее концентрация, образуются гидротермальные месторождения ртути [14].

Анализы ртути в хемогенных осадках и гидротермальных глинах выполнены методом диффузного разделения на установке УДР, разработанной И.И. Степановым, в комплекте с атомно-флуоресцентным спектрофотометром «Меркурий-3М». Предел обнаружения $Hg - 2 \cdot 10^{-7}$ % (2 ppb). Достаточно подробная характеристика этого метода приведена в работе [16].

Район исслелований

Кихпинычский долгоживущий вулканический центр расположен в центральной части Восточного вулканического пояса Камчатки [2] и образовался на пересечении двух разломов. Основные структурные элементы этого центра определяются глубинным разломом северо-восточного простирания [4]. Субширотный Узонско-Валагинский разлом второго порядка является осложняющей структурой [20]. КДВЦ находится в восточной части этого разлома.

Центр включает несколько разнородных и разновозрастных сооружений (рис. 1). Одно из них — средне-верхнеплейстоценовый вулкан Старый Кихпиныч (СК), который сложен высокоглиноземистыми базальтами, сильно измененными гидротермальными процессами. Вулкан образовался до этапа мощных игнимбритообразующих извержений и кальдерообразования в Восточной вулканической зоне [2]. Постройка вулкана Старый Кихпиныч служит основанием для дацитового вулкана Сопка Желтая, возникшего в конце позднего плейстоцена, и расположенного севернее голоценового базальтового вулкана Молодой Кихпиныч, состоящего из конуса Западный и конуса Савича [2, 3]. Эти два конуса возникли после длительного (десятки тысяч лет) перерыва в деятельности вулкана Старый Кихпиныч.

Гейзерная гидротермальная система представляет собой восходящий водный поток из области магматического очага вулканического массива Кихпиныч, сформированный местными инфильтрационными водами и водами регионального подземного стока [10]. Отмечается, что основная разгрузка латерального потока гидротерм (T∼180 °C) происходит в нижнем течении реки Гейзерной.

Результаты исследования

На рис. 1 отмечены термальные поля, образцы с которых проанализированы на содержание ртути. На рис. 2а на большом фактическом материале (более 200 образцов)

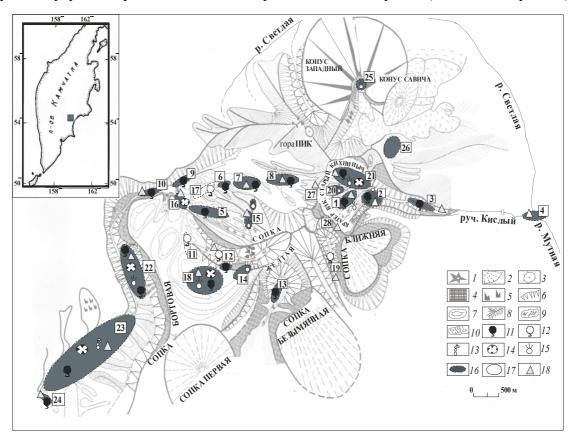


Рис. 1. Схема расположения пунктов отбора проб для определения содержания ртути в хемогенных осадках и термальных глинах котлов на полях КДВЦ. *1*- лавовые конусы; 2 — лавопирокластические конусы; 3 — вершины; 4 — отвесные склоны; 5 - отдельные скалы; 6 — крутые склоны; 7— горизонтали; 8 — водоразделы; 9 — снежники; 10 — лавовые потоки; 11 — теплые и горячие источники; 12 — холодные источники; 13 — гейзеры; 14 — котлы; 15 - паровые струи; 16 — термальные поля (цифра — номер поля); 17 - границы полей с холодными источниками; 18 — Нд. *Термальные поля*: 1 — Южное (СК); 2 — Восточное (СК); 3 — «Щеки», восточный склон СК, русло ручья Кислый; 4 — исток р. Мутная; 5 — Каменный Карман; 6 — Теплое; 7 — Травертиновое; 8 — Перевальное; 9 — ручей Прозрачный; 10 — «Колорадо»; 11 — холодные источники Новые; 12 — горячий источник Новый; 13 — исток ручья Короткий Ключ; 14 — Вершинное; 15 — Северо-Кихпинычское; 16 - Долина Смерти; 17 — Серное (холодное); 18 — ЮКТП; 19 — источник в верховье ручья Извилистый; 20 — Западное; 21 — Северное (СК); 22 — Верхне-Гейзерное; 23 — Долина Гейзеров; 24 — ручей Второй (в ~ 0.5 км от гейзера Первенец вниз по р. Шумная); 25 - Конус Савича; 26 — Склоновое; 27 — перевал Западный; 28 — перевал Южный. На врезке показано расположение района исследований

показано распределение ртути в районе КДВЦ в хемогенных осадках и термальных глинах грязевых котлов. В табл. 1 приведены пределы содержания ртути на термальных полях КДВЦ и средние содержания ртути для каждого из них. Наибольший разброс значений на термальных полях (ТП): Южно-Кихпинычском (ЮКТП), Верхне-Гейзерном (ВГ) и Долине Гейзеров (ДГ). На дацитах вулкана Верхнегейзерный (средний плейстоцен) расположено термальное поле Верхне-Гейзерное [9]. ЮКТП находится у южного подножия Сопки Желтой. Средние содержания ртути в гидротермальных

Таблица 1. Содержание Hg в хемогенных осадках и в глинах грязевых котлов на некоторых термальных полях КДВЦ (10^{-6} %).

термальных полях кдрц (10 /0).			1	
Название термального поля (площадки)	n*	ОТ	до	X _{cp} **
Южное, ТП 1; кратер вулкана Старый Кихпиныч	14	<0.2	590	259.9
Северное, ТП 21; то же	7	5	480	108
Восточное, ТП 2; то же	2	23	31	27
Кратер вулкана Старый Кихпиныч (СК)		<0.2	590	131.6
СК, восточный склон; «Щеки», ТП 3	2	23	23	23
СК, западный перевал; (№ 27)	3	24	120	69.3
СК, южный склон сопки Ближней, жила СаСО ₃ ; ТП 19	1	5		
СК, южный перевал (№ 28)	1	64		
Верхне-Гейзерное (ВГ), ручей Кровавый***	2	6	1100	552.5
ВГ, Малышка***	2	420	1250	835
ВГ, Большая фумарола, (центральная)***	9	500	4200	1964.4
ВГ, Большая фумарола, (верхняя)***	5	660	2630	2146
ВГ, Лагерный***	2	2300	3900	3100
ВГ, Лагерный, оползень 1986 г.***	4	860	3500	2390
ВГ, Термальное болото, (верхняя)***	15	110	2200	846
ВГ, Термальное болото, (центральная)***	1	720		
ВГ, Термальное болото, (нижняя)***	17	620	1100	644.6
ВГ, ручей Горячий***	1	1800		
ВГ, ручей Теплый, (северная)***	15	3	1000	283.5
ВГ, ручей Теплый, (южная)***	6	80	920	493.3
ВГ, ручей Подъемный***	3	480	540	510
Верхне-Гейзерное поле (ТП 23)	82	3	4200	1252.7
Долина Гейзеров (ДГ), гейзеры; ТП 23	7	10	2600	534.1
ДГ, котлы	22	65	640	347.9
ДГ, карбонаты	1	< 0.2		
Долина Гейзеров (ТП 23)	30	< 0.2	2600	441
Ручей Второй, вниз по реке Шумная, ТП 24	1	2600		
Перевальное, ТП 8	4	20	100	46
Травертиновое, ТП 7	14	< 0.2	380	165.2
«Колорадо», ТП 10	3	7	90	35.7
Долина Смерти, ТП 16	1	910		
Южно-Кихпинычское, ТП 18	34	41	4000	659
Сопка Желтая, северный склон, ТП 15	3	15	220	107
Сопка Желтая, ТП 12	1	33		
Исток реки Мутной (№ 4)	2	33	36	34.5
		- 	-	

Примечание. **n*** - количество проанализированных образцов; **X**_{ср.}** - среднее содержание Нg; *** - название площадки.

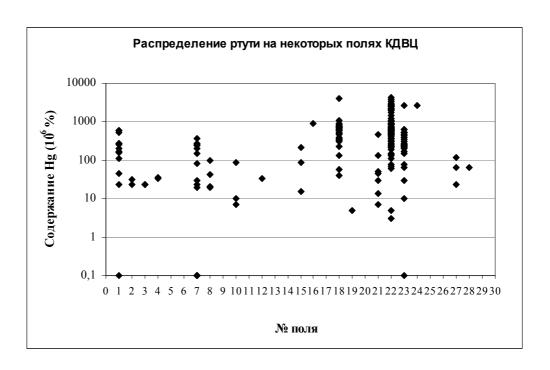


Рис. 2а. Распределение ртути в хемогенных осадках и гидротермальных глинах котлов на некоторых термальных полях КДВЦ: 1 – Южное; 2 – Восточное, 3 – «Щеки»; 4 – исток р. Мутной; 7 – Травертиновое; 8 – Перевальное; 10 – «Колорадо»; 12 – горячий источник Новый; 15 – Северо-Кихпинычское; 16 – Долина Смерти; 18 – ЮКТП; 19 – ручей Извилистый; 21 – Северное; 22 – ВГ ТП; 23 – ДГ ТП; 24 – Второй ручей (в ~ 0,5 км от гейзера Первенец); 27 – Западный Перевал; 28 – Южный Перевал.

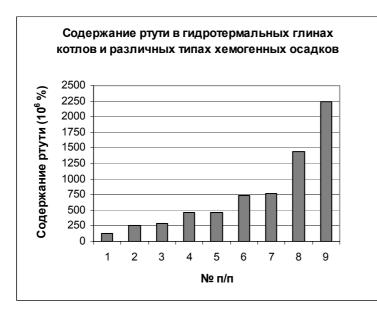


Рис. 26. Средние содержания ртути в гидротермальных глинах котлов и различных типах хемогенных осадков В районе КДВЦ. Tun осадка: железистый (25); 2 карбонатный (24); 3 – глиноземистый (5); 4 – железистый с аморфным кремнеземом (4); 5 – кремнистый (11); 6 – кремнистый с серой (4); 7 – глины термальных котлов (117); 8 – серные (2); 9 – серные с пиритом (5). Цифра в скобках количество исследованных содержание ртути образцов.

глинах котлов и различных типах осадков представлены на рис. 2б. На рисунке видно, что наименьшее среднее содержание отмечается для железистых осадков, а самое высокое – для сернистых осадков с пиритом.

Расположение термальных участков на Верхне-Гейзерном ТП показано на рис. 3. Распределение ртути в минеральных осадках на отдельных участках Верхне-Гейзерного поля приведены на рис. 4а. Наиболее высокие содержания ртути отмечаются в образцах, отобранных на участках «Большая фумарола» и «Лагерный». Весьма высокое содержание Нg в осадке аморфной серы (сульфурите) в истоках ручья Горячего и расположенного рядом участка «Термальное болото», площадка Верхняя. На рис. 4б пока-

зано распределение ртути по типам осадков в кратере вулкана Старый Кихпиныч. Наибольший разброс значений в содержании ртути в этом кратере наблюдается для желе-

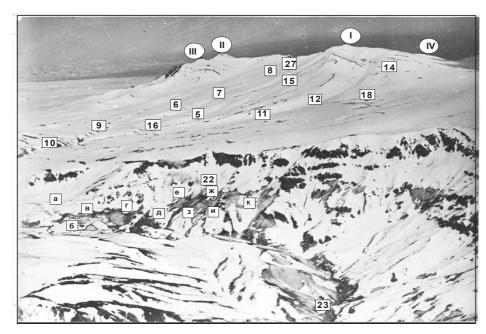
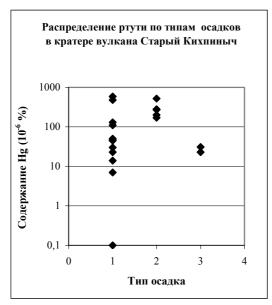


Рис. 3. КДВЦ со стороны р. Гейзерной (фото Белоусова В.И., июнь 1967 г.). I – сопка Желтая, II – конус Савича, III – гора Пик, IV - сопка Безымянная. Названия термальных полей см. на рис.1. Участки Верхне-Гейзерного термального поля: а – ручей Кровавый, б Малышка, в -Большая фумарола, ε – Лагерный, ∂ -е -Термальное болото


 $(\partial - \text{нижняя площадка}, e - \text{верхняя}), ж - исток ручья Горячего (виден столб пара), <math>3-u$ - ручей Теплый (3 - северная площадка, u - южная), κ - ручей Подъемный.

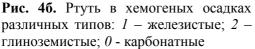


Рис. 4а. Распределение ртути на участках Верхне-Гейзерного термального поля. *Участки*: 1 – ручей Кровавый; 2 – Малышка; 3 – Большая фумарола; 4 – Лагерный; 5 – Термальное болото, площадка Нижняя; 6 – Термальное болото, площадка Верхняя; 7 – ручей Горячий; 8 – ручей Теплый, площадка Северная; 9 – ручей Теплый, площадка Южная; 10 – ручей Подъемный.

зистых осадков. На рис. 4в показано распределение ртути в хемогенных осадках и глинах грязевых котлов в Долине Гейзеров. Наибольший разброс значений отмечается для кремнистых осадков (три порядка).

Диаграммы распределения ртути по отдельным типам осадков в районе КДВЦ приведены на рис. 5а-г. Для нескольких карбонатных осадков (рис. 5а) содержание Hg ниже чувствительности метода ($<0.2 \cdot 10^{-6}$ %). На Травертиновом поле это образцы, ото-

Рис. 4в. Ртуть в термальных глинах и осадках Долины Гейзеров: I – кремнистые; 2 – глины; 3 - карбонатные

бранные в шурфах ниже уровня грунтовых вод. В Долине Гейзеров образец взят вблизи головки грифона источника Аверий, который находился на момент отбора образца в русле ручья Водопадный. Самое высокое содержание ртути в образце, отобранном чуть выше уреза воды, в ~ 50 м выше по течению от впадения ручья Второго в р. Шумную. В кальцитовой жиле, обнажающейся в борту ручья Извилистого у южного подножия сопки Ближней, самое низкое содержание ртути (5·10⁻⁶ %). В карбонатных осадках Верхне-Гейзерного поля содержание ртути в светлых карбонатах на порядок ниже, чем в темных, с гидроокислами марганца. Это пример сорбции Нg метаколлоидными Мп осадками. Карбонатные осадки, отобранные на Восточном поле, представлены арагонитом, все остальные – кальцитом.

Рис. 5а. Распределение ртути в карбонатных осадках КДВЦ: *I* – **ТП** 2; *2* – **ТП 7**; *3* – **ТП 22**; *4* – **ТП 23**; *5* – **ТП** 24; *6* – **ТП 19** (жила) Название и расположение **ТП** см. на рис.1.

Рис. 56. Распределение ртути в железистых осадках на термальных полях КДВЦ: *I* – **ТП 1** (5); *2* – **ТП 3** (2); *3* – **ТП 4** (1); *4* – **ТП 8** (4); *5* – **ТП 10** (3); *6* – **ТП 12** (1); *7* – **ТП 21** (7); *8* – **ТП 22** (3). Местоположение термальных полей см. на рис. 1. Цифра в скобках – количество образцов, в которых определялась ртуть.

Распределение ртути в свежих железистых осадках на термальных полях КДВЦ показано на рис. 5б. Большинство значений находится в интервале $10\text{-}100\text{·}10^\text{-}6$ %. На Верхне-Гейзерном поле низкое содержание ртути ($5\cdot10^\text{-}6$ %) было в сидерогеле из холодного источника на участке «ручей Кровавый». Наиболее высокие значения на устьях кипящих источников на участке Малышка (см. рис. 3) — в образце гидрогетита ($1250\cdot10^\text{-}6$ %) и $1400\cdot10^\text{-}6$ % в образце, состоящем из гидрогетита и гидроярозита. Образец с содержанием ртути $<0.2\cdot10^\text{-}6$ % относится к старой корочке гидрогетита на обломке базальта с Сопки Ближней (Южное поле, СК).

На рис. 5в видно, что в кремнистых осадках Долины Гейзеров разброс в содержании ртути достигает трех порядков. Наибольшее содержание Hg ($2600 \cdot 10^{-6}$ %) обнаружено в образце гейзерита (гейзер Жемчужный), наименьшее - в кремнистом осадке гейзера Коварный ($10 \cdot 10^{-6}$ %). Различия в содержании ртути в образцах опалитов, отобранных в разных концах ЮКТП и на разной глубине, минимальны.

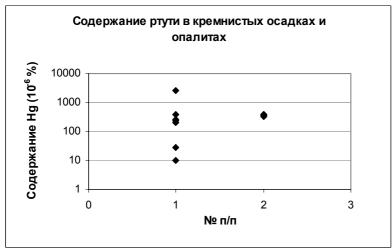


Рис. 5в. Распределение ртути: 1-в гейзеритах и кремнистых осадках источников Долины Гейзеров (7); 2 - в опалитах ЮКТП (4). Цифры в скобках — количество исследованных на содержание ртути образцов

В гидротермальных глинах грязевых котлов довольно высокое содержание ртути (рис. 5г), хотя разница между крайними значениями может достигать трех порядков, как в глинах Верхне-Гейзерного поля. Наиболее высокие содержания ртути наблюдаются в тех котлах, где присутствует сера и пирит. В табл. 2 показаны пределы содержания ртути в глинах грязевых котлов, а также средние содержания ртути по отдельным полям. Наиболее высокое среднее содержание ртути в глинах Верхне-Гейзерного поля $(1040\cdot10^{-6})$ %.

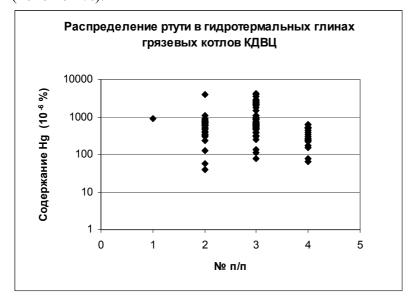


Рис. 5г. Распределение ртути в гидротермальных глинах грязевых котлов на термальных полях КДВЦ: 1 — Долина Смерти; 2 — Южно-Кихпинычское; 3 - Верхне-Гейзерное; 4 — Долина Гейзеров.

Таблица 2. Ртуть в гидротермальных глинах котлов КДВЦ (10⁻⁶ %)

№ поля	Термальные поля	Количество образцов	От	До	X _{cp.}
16	Долина смерти	1	910		
18	Южно-Кихпинычское	34	41	4000	659
22	Верхнен-Гейзерное	60	80	4200	1168
23	Долина Гейзеров	22	65	640	348

В некоторых типах хемогенных осадков КДВЦ содержание ртути почти такое же высокое, как в минеральных осадках кальдеры Узон [1] (до $42 \cdot 10^{-4}$ %, см. табл. 1, рис. 5в и др.). На Верхне-Гейзерном поле на площадке Северной участка Ручей Теплый в осадке со дна одной из «сковородок» был обнаружен обломок кристалла киновари (~ 2 мм). Киноварь подтверждена рентгеновским анализом. Но в измененной породе (керолите), окружающей «сковородку», содержание ртути всего $5 \cdot 10^{-6}$ %.

Обсуждение результатов

Ртуть не имеет четкой приуроченности ни к кислым, ни к основным магмам, поскольку ее содержания в этих породах близки. Среднее со-держание $Hg\ (10^{-6}\ \%)$ в кислых породах докальдерного этапа Узон-Гейзерной депрессии равно 4.1, в основных — 4.6, в кислых породах посткальдерного этапа - 1.9 [13, 16]. Высокий потенциал ионизации Hg определяет многие ее химические особенности и является одним из факторов, играющих наиболее важную роль в ее геохимии. Как халькофильный элемент ртуть накапливается одновременно с серой. Именно этим можно объяснить ее высокое содержание в серных котлах и хемогенных серных осадках (часто с кремнеземом или пиритом).

Работами многих ученых подтверждено, что минералы гидротермальных месторождений всегда содержат повышенные количества ртути. Ртуть в минералах находится в двух формах: 1) она может изоморфно входить в кристаллическую решетку сульфидов Сu, Zn, Fe и др., с другой стороны она может присутствовать в форме механических примесей киновари к другим минералам, например, реальгару [15]. Повышенные содержания ртути в глинистых породах объясняются, по экспериментальным данным, сорбцией из раствора. Именно сорбцией можно объяснить высокое содержание Hg в глинах и в большинстве хемогенных осадков КДВЦ.

Многие исследователи считают, что миграция рудных компонентов (Hg, Sb и др.) обязана своей миграцией углекислым растворам, в то время, как осаждающим фактором служит локальная концентрация H_2S [5,18 и др.].

В пределах Курило-Камчатского вулканического пояса наиболее контрастные ртутные аномалии и все рудопроявления ртути в пределах современных гидротермальных систем приурочены к зонам вторичной конденсации парогазовой фазы, обогащенной Hg, H₂S и другими летучими компонентами [16]. Формирование парогазовой фазы происходит в результате вскипания перегретых гидротермальных растворов. Уровень вскипания гидротерм является геохимическим барьером, на котором происходит сепарация летучих и труднолетучих компонентов растворов. Механизм фазовой дифференциации обеспечивает разделение путей миграции Hg и Cu, Zn, Pb и др. Отсутствие корреляции Hg и Cu, Zn, Pb может являться одним из генетических признаков [16] для ртутных месторождений и рудопроявлений, образовавшихся в зонах вторичной конденсации паровой фазы. Отсутствие корреляции в содержании этих компонентов в наших образцах свидетельствует в пользу зоны вторичной конденсации паровой фазы.

В недрах гидротермальных систем при T > 200 °C и парциальных давлениях H_2S , характерных для гидротерм гидротермальных систем типа Паужетской и Северо - Мутновской, происходит отгонка Hg с ее накоплением в верхних (и периферических) относительно низкотемпературных (T < 200°C) зонах [17]. В недрах этих систем [16] основ-

ной формой переноса Hg является растворенная атомарная ртуть Hg^0 (раствор). В приповерхностной зоне вторичной конденсации, обогащенной H_2S , перенос возможен как в атомарной, так и в гидросульфидной формах.

На основании физико-химических расчетов доказано [12], что за перенос ртути в современных термальных источниках ответственны атомарная форма Hg^0_{aq} , роль которой возрастает с повышением температуры, и комплекс HgSHS^- в сероводородных водах при температурах ниже 200° С. Основными факторами отложения киновари из вод является их охлаждение и понижение концентрации сульфидной серы.

По данным Уайта Д.Э. [19] при отсутствии жидкой воды во флюиде возможен перенос Hg в форме соединения HgCl₂ наряду с H₂S, однако наличие воды приводит к немедленному осаждению HgS. Находка киновари на ВГ термальном поле была сделана на устье того же источника, что и самородный алюминий, имеющий газоконденсатное происхождение [8]. (В отдельные годы источник превращался в парогазовый выход). Самородный Al по данным [11] может выделяться из сильно восстановительного флюида, содержащего хлориды алюминия AlCl₃. В подобных условиях, вероятно, возможен перенос ртути в форме HgCl₂. Находка достаточно крупного кристалла киновари в таких специфических условиях, возможно, свидетельствует о существовании на некоторой глубине ртутного рудопроявления.

Заключение

Практически на всех термальных полях КДВЦ содержание ртути на 1-3 порядка выше, по сравнению с неизмененными породами района. Высокие содержания ртути в хемогенных осадках и гидротермальных глинах позволяют выделить, кроме Долины Гейзеров, еще два термальных поля, где происходит поступление флюида с глубины: Верхне-Гейзерное и Южно-Кихпинычское. Наиболее высокие содержания Нg наблюдаются в гидротермальных глинах котлов именно этих термальных полей. Ртутные аномалии совпадают на ВГ и ЮКТП с аномальными содержаниями U и Th. На ЮКТП аномалии Нg совпадают с аномалиями по Rn. На этом же поле высокое содержание в газах CO₂, CH₄, H₂S.

На Верхне-Гейзерном термальном поле наиболее высокие содержания Hg во всех типах минеральных осадков отмечаются в радиусе 50-100 м от фумаролы Большой (T = 110 °C, устное сообщение Леонова В.Л.). В железистых осадках ВГ наиболее высокие содержания Hg фиксируются в гидрогетитах, иногда с ярозитом, на устьях кипящих источников ($1260-1400\cdot10^{-6}$ %). Высокое содержание ртути отмечено в гейзерите гейзера Жемчужный ($2600\cdot10^{-6}$ %), такое же оно в кальците ТП 24 (см. рис.1).

В районе КДВЦ выделяются две фазы осаждения ртути, разделенные во времени. Более ранняя генерация представлена крупными кристаллами киновари (ВГ), современное осаждение ртути происходит в результате сорбции минеральными глинами и хемогенными осадками, часто метаколлоидными.

СПИСОК ЛИТЕРАТУРЫ

- 1. Адамчук Ю.В., Карпов Г.А., Максимовский В.А., Петрова Н.А. Содержание урана, тория и сопутствующих элементов (Pb, As, Hg, Bi, Rb, Sr) в породах и минеральных осадках действующей гидротермальной системы кальдеры Узон на Камчатке. М: Изд-во ЦНИИ атоминформ, 1986. 37 с.
- 2. *Брайцева О.А.*, *Флоренский И.В.*, *Волынец О.Н.* Вулкан Кихпиныч // Действующие вулканы Камчатки. Т. 2. М.: Наука, 1991. С. 72-91.
- 3. *Брайцева О.А.*, *Флоренский И.В.*, *Пономарева В.В. и др.* История активности вулкана Кихпиныч в голоцене //Вулканология и сейсмология. 1985. № 6. С. 3-19.
- 4. *Белоусов В.И.* Геология гидротермальных полей в областях современного вулканизма. М.: Наука, 1978. 137 с.

- 5. *Иванов В.В.* Экологическая геохимия элементов. Справочник. Кн. 5 / Под ред. Буренкова Э.К. М.: Недра, 1997, 576 с.
- 6. *Карданова О.Ф.* Состав вод и хемогенные осадки в источниках Ключа Кислый (вулкан Кихпиныч, Камчатка) // Вулканология и сейсмология. 1983. № 6. С. 64-75.
- 7. *Карданова О.Ф., Карпов Г.А.* Условия образования и типы парагенетических ассоциаций глиноземистых осадков Кихпинычского долгоживущего вулканического центра (Камчатка) // Вулканология и сейсмология. 2000. № 3. С. 15-34.
- 8. *Карданова О.Ф., Философова Т.М.* Самородный алюминий в осадках из вод Верхне-Гейзерного поля вулкана Кихпиныч // Современное вулканогенно-гидротермальное минералорудообразование. Материалы первой сессии Камчатского отделения ВМО, Петропавловск-Камчатский, 1989. Часть II. Владивосток. 1992. С. 19-31.
- 9. *Леонов В.Л., Гриб Е.Н.* Структурные позиции и вулканизм четвертичных кальдер Камчатки. Владивосток: Дальнаука, 2004. 189 с.
- 10. *Леонов В.Л.*, *Гриб Е.Н.*, *Карпов Г.А. и др.* Кальдера Узон и Долина Гейзеров // Действующие вулканы Камчатки. Т. 2. М.: Наука, 1991. С. 92-141.
- 11. *Никольский Н.С.* Флюидный режим эндогенного минералообразования. М.: Наука, 1987. 198 с.
- 12. Оболенский А.А., Гущина Л.В., Борисенко А.С. Физико-химические модели рудообразования на ртутных месторождениях // Геология и геофизика, 2006, № 12, С. 1344-1359.
- 13. Озерова Н.А. Ртуть и эндогенное рудообразование. М.: Наука, 1986. 232 с.
- 14. Перельман А.Н. Геохимия, М.: Высшая школа, 1989
- 15. Сауков А.А. Геохимия. М.: Наука, 1975. 480 с.
- 16. Трухин Ю.П., Степанов И.И., Шувалов Р.А. Ртуть в современном гидротермальном процессе. М.: Наука, 1986. 199 с.
- 17. *Трухин Ю.П., Непомнящая Н.Я.* Ртутометрическая съемка // Геотермические и геохимические исследования высокотемпературных гидротерм. М.: Наука, 1986. С. 109-126.
- 18. Тугаринов А.Н. Общая геохимия. М.: Атомиздат, 1973. 288 с.
- 19. Уайт Д.Э. Месторождения ртути и цветных металлов, связанные с термальными источниками / Геохимия гидротермальных рудных месторождений. М.: Мир, 1970. С. 479-528.
- 20. *Шанцер А.Е.* Некоторые особенности эволюции тектоно-магматических структур Камчатки в зависимости от ее блокового строения и движения блоков в позднем кайнозое // Бюл. вулканол. станций. 1979. № 57. С. 53-65.

HG IN MINERAL SEDIMENTS AND THERMAL CLAYS FROM MUD POOLS AT THE LONG-LIVED KIKHPINYCH VOLCANIC CENTER

O.F. Kardanova

Institute of Volcanology and Seismology FEB RAS, Petropavlovsk-Kamchatsky, 683006 e-mail: kof@kscnet.ru

Analysis of mercury content in mineral sediment from the long-lived Kikhpinych volcanic center allows distinguishing the most active zones with high temperatures at depth. Along with the Geyser Valley, such zones include Verkhne-Geisernoye and Yuzhno-Kikhpinychskoye thermal fields. The highest mercury contents have been reported in sulfur pools (often with pyrite and kaolinite), in sulfur and siliceous-sulfur sediments of the springs, and in geyserites of big geysers.