УДК 551.31

Сравнительная петро-минерало-геохимическая характеристика пеплов извержений Ключевского вулкана (ноябрь-декабрь 2020 г. – январь 2021 г.)

Г.А. Карпов¹, В.И. Силаев², Л.П. Аникин¹, В.Н. Филиппов², Д.В. Киселёва³, Б.А. Макеев², С.Н. Шанина², Л.П. Вергасова¹, А.Ф. Хазов², К.В. Тарасов¹

¹ Институт вулканологии и сейсмологии ДВО РАН, Петропавловск-Камчатский, 683006; e-mail: karpovga@kscnet.ru

² Институт геологии Коми НЦ УрО РАН, Сыктывкар

³ Институт геологии и геохимии УрО РАН, Екатеринбург

Необходимость комплексных минералого-геохимических исследований вещества пепловых выбросов извержений разных лет часто извергающегося в последнее время Ключевского вулкана [4] стала очевидной после установления геофизиками двухочагового строения зоны питания этого вулканического центра [2, 6, 7], а петрологические данные позволили выявить признаки закономерных вариаций состава расплавов – от магнезиальных до высокоглиноземистых базальтов, при утвердившемся мнении о единстве глубины генерации магм [6, 7]. Именно пеплы, по нашему мнению [1, 5], несут большую информацию об энергетической составляющей, глубинности магматического вещества, поставляемого к поверхности, и составе эндогенных газов.

Нами выполнены комплексные исследования четырех достаточно представительных проб продуктов трех последних извержений Ключевского вулкана: № 152 (30.11.2020 г.); № 153 (14.12.2020 г.); № 154/1 и 154/2 (18.01.2021 г.) Исследуемые пеплы сероцветные, по данным гранулометрического анализа представлены мелко-средне-зернистыми песками со следующей пропорцией между фракциями –0.25 и +0.25 мм (%): № 152, соответственно, 98.8 и 1.20; № 153 – 98.93 и 1.07; № 154/1 – 98.54 и 1.46; № 154/2 – 98.51 и 1.49.

Морфология частиц пеплов исследована на примере средне-песчаной фракции. Во всех случаях мы имеем дело с угловатыми, неправильной формы частицами, обнаруживающими признаки микровезикулярности – результат дегазации. В хронологическом ряду отобранных проб пеплов увеличивается размер частиц, снижается степень их удлинения и возрастает прямая корреляция между длинными и короткими размерами зерен.

По валовому составу (анализ рентгенфлюоресцентным методом) все образцы пеплов отвечают андезибазальтам (рисунок). Состав отдельных частиц, напротив, обнаруживает широкие вариации. В образце № 152 частицы исследованной гранулометрической фракции колеблются по составу от андезибазальтов до трахиандезибазальтов, андезитов, трахидацитов и низкощелочных дацитов. В обр. № 153 состав частиц изменяется в более узких пределах – от андезибазальтов до трахидацитов и низкощелочных дацитов. В обр. № 154 (наиболее поздних пеплов) размах варьирования химического состава частиц опять увеличивается, достигая максимума: от базальтов до трахибазальтов, андезибазальтов, трахиандезибазальтов, андезитов. трахидацитов И низкощелочных дацитов. Таким образом, в хронологическом ряду изверженных пеплов наблюдается волнообразное изменение химического состава частиц пеплов - от умеренно неоднородного к относительно однородному и далее к весьма широко варьирующему от базальтов до дацитов.

Сопоставление валового химизма пеплов и химизма частиц средне-крупнопесчаной фракции приводит к выводу о сравнительно более основном составе мелкозернистой фракции. В наибольшей степени этот эффект проявлен в обр. № 153, а в наименьшей – в обр. № 154 (18 января 2021 г).

Рисунок. Диаграмма TAS химизма пепловых продуктов извержений Ключевского вулкана в 2020-2021 гг. Графы на диаграмме: 1 – пикриты; 2, 3 – пикриты, соответственно умеренношелочные, щелочные, основные; 4 – фондиты; 5-8 – пикробазальты, соответственно ультраосновные, умеренно-щелочные, щелочные, основные; 9 – базальты; 10 – трахибазальты; 11 – базальты щелочные; 12 – андезибазальты; 13 – трахиандезибазальты; 14 – фонотефриты; 15 – андезиты; 16 – трахидациты; 17 – тефрифонолиты; 18 – дациты низкощелочные; 19 – дациты; 20 – трахидациты; 21 – трахиты; 22 – трахиты щелочные; 23 – фонолиты; 24 – низкошелочные: 25 – трахидациты; 26 – трахириодациты; риолациты 27 – риолациты щелочные (пантеллериты); 28 – риолиты низкощелочные; 29 – риолиты; 30 – трахириолиты; 31 – риолиты щелочные (комендиты). Звездочками с номерами показаны валовые химические составы анализированных пеплов Ключевского вулкана, эллипсы – статистические данные (среднее ± СКО) химического состава отдельных частиц гранулометрической фракции +0.25 мм.

Рентгенофазовый состав пеплов определялся на дифрактометре XRD-6000 фирмы Shimadzu, Япония. Ha полученных рентгенограммах, кроме гало, обусловленного вулканическим стеклом, регистрируются пики от ряда породообразующих минералов, слагающих в пеплах микролиты. В частицах обр. № 152 и 153 выявлен анортит. В рентгенограммах частиц обр. № 154 установлены пики нескольких минералов, что свидетельствует о большей степени раскристаллизации соответствующего пепла. Среди этих минералов диагностированы: анортит, альбит, ортопироксен, магнезиальный оливин. По данным сканирующей электронной микроскопии, составу этого оливина соответствует эмпирическая формула (Mg0 62-0.69 Fe0.31-0.37 Mn0-0.01) [SiO₄]. В единичных случаях в пепловых частицах обр. № 154 обнаруживается примесь кварца, диагностированного по отражениям (Å) 3.34 (101 и 4.26). Таким образом, выявляется тенденция к росту степени раскристаллизации частиц пеплов в направлении от обр. № 152 и 153 к обр. № 154. Последний отличается также гораздо более разнообразным составом микролитов. Сквозным акцессорным минералом для исследуемых пеплов является магнетит, представленный двумя генерациями: 1) ранней, более глубинной, с составом (Mg_{0.47-0.79}Fe_{0.13-0.46}Mn_{0-0.13}Cu_{0-0.06}) (Fe_{1.67-1.94}Al_{0-0.2}Ti_{0-0.13})₂O₄, варьирующей по минальному составу от магнетитомагноферрита до якобсита-магнетито-магноферрита ульвита-магнетито-И магноферрита (примесные миналы – галаксит, купрошпинель, шпинель); 2) более поздней и гораздо менее глубинной, с типичным для продуктов камчатского вулканизма составом (Fe_{0.82-0.96}Mn_{0-0.4}Mg_{0-0.14})(Fe_{1.69-2}Al_{0-0.17}Ti_{0-0.14})₂O₄, по минальному составу изменяющимся от магнетита до ульвит-магнетита и ульвит-магноферритмагнетита (примесный минал – галаксит, якобсит). Следует подчеркнуть, что обнаружение в пеплах сильно магнезиального и при этом почти не содержащего титан магнетита (магноферрита) подтверждает вывод Л.И. Гонтовой [3] о существовании под вулканами Ключевской группы на относительно небольшой глубине в 30 км астенолита, т.е. о существовании здесь астеносферного диапира, являющегося проводником вещества к поверхности с глубины порядка 200 км.

В составе микроминералов выявлены самороднометаллические фазы: алюминий $Al_{0.89-0.98}Si_{0.02-0.1}Ca_{0-0.01}$, железо $Fe_{0.99}Mn_{0.01}$, никелистое железо $Fe_{0.96}Ni_{0.04}$, никель $Ni_{0.98}Ag_{0.02-0.03}Cu_{0-0.02}$, медь, латунь, молибден, молибден-железный сплав $Mo_{0.42-0.52}Fe_{0.48-0.58}$, свинец, хром-свинцовый сплав $Pb_{0.49-0.52}Cr_{0.36-0.37}Fe_{0.11-0.15}$, свинцово-оловянный сплав $Sn_{0.3-0.64}Pb_{0.36-0.66}Sb_{0-0.04}$. Халькогениды представлены галенитом и минералами группы халькозина ($Cu_{1.16-1.3}Ag_{0-0.02}$)_1.16-1.32S (спионкопит-ярроуит). Из оксидов среди микроминералов обнаружены эсколаит Cr_2O_3 и валентинит ($Sb_{0.79-1}Ti_{0-0.21}$)_ $2O_3$. В качестве хлоридов выступают атакамит $Cu_2Cl_{0.38-1.06}(OH)_{2.94-3.62}$ и трёхкомпонентные твердые растворы состава $PbCl_2$ (45.36-66.46 мол. %) + NaCl (15.95-29.95 мол. %) + KCl (17.31-34.49 мол. %). Алюмосиликаты в ассоциации микроминералов представлены Mg-Fe хлоритами и каолинитом. Из кислородных солей выявлены кальцит, церуссит и барит ($Ba_{0.56-0.72}Zn_{0.17-0.37}Ca_{0.07-0.08}Sr_{0-0.03}$)[SO4]. Наиболее сложным микроминеральным составом характеризуется обр. № 154.

Важной особенностью исследованных пеплов является присутствие в них эндогенного углеродистого вещества в дисперсно-рассеянной и конденсированной (частицы и нитевидные формы органоидов) формах. В ассоциации с этим веществом, вероятно, впервые для камчатских вулканов обнаружены смеси – двойные соли предположительно, формиата титана кальцита И. Ti(HCOO)₃, а также Ba-Fe-Zn-Mg, металлоорганические соединения диагностированные методом аналитической СЭМ, с использованием волнового спектрометра.

В результате пирохроматографического анализа (нагревание до 1000 °C) в пеплах обнаружена газовая фаза, состоящая из неорганических (H₂, N₂, NO, CO, CO₂) и органических (CH₄, C₂H₄, C₂H₆, C₃H₆, C₃H₈) компонентов. Пропорции между компонентами в этой фазе свидетельствуют о вероятно глубинном происхождении, по крайней мере, части вещества пеплов.

Список литературы

- 1. *Вергасова Л.П., Карпов Г.А., Филатов С.К.* Минералогия измененных пород и вулканических эксгаляций Камчатки // История науки и техники. 2017. № 7. С. 52-65.
- 2. Гонтовая Л.И., Попруженко С.В., Низкоус И.В. Структура верхней мантии зоны перехода «океан-континент» в районе Камчатки // Вулканология и сейсмология. 2010. № 4. С. 13-29.
- 3. Гонтовая Л.И., Силаев В.И., Вергасова Л.П. и др. К вопросу о глубинности источника флюидно-магматического вещества под Толбачинским и Ключевским вулканами // Вулканизм и связанные с ним процессы. Материалы XX региональной научной конференции, посвященной Дню вулканолога. Петропавловск-Камчатский. 2017. С. 22-25.
- 4. *Озеров А.Ю., Гирина О.А., Жаринов Н.А. и др.* Извержения вулканов северной группы Камчатки в начале XXI века // Вулканология и сейсмология. 2020. № 1. С. 3-19.
- 5. Силаев В.И., Карпов Г.А., Аникин Л.П. и др. Минерально-фазовый парагенезис в эксплозивных продуктах современных извержений вулканов Камчатки и Курил. Часть 2. Минералы-спутники алмазов Толбачинского типа // Вулканология и сейсмология. 2019. № 6. С. 36-49.
- 6. Хубуная С.А., Соболев А.В., Портнягин М.В. и др. Петрология известково-щелочных базальтов Ключевского вулкана (Камчатка) // Современный вулканизм и связанные с ним процессы: Материалы юбилейной сессии КНЦ ДВО РАН, посвященной 40-летию Института вулканологии. Петропавловск-Камчатский. 2002. С. 34-37.
- 7. *Хубуная С.А., Ерёмина Т.С., Соболев А.В.* Формационная принадлежность калиевых трахиандезибазальтов побочного извержения 2012-2013 гг. вулкана Плоский Толбачик по геохимическим признакам (Камчатка) // Вулканология и сейсмология. 2016. № 1. С. 1-19.