Моделирование времен формирования Fo-Ni неоднородностей на примере оливинов Авачинского вулкана

Гордейчик Б.Н. $^{1,2}$ , Чурикова Т.Г. $^2$ , Муравьев Я.Д. $^2$ , Кронц А. $^3$ , Вёрнер Г. $^3$ 

Modeling the formation times of Fo-Ni nonuniformities: an example of Avacha volcano olivine crystals

Gordeychik B.N., Churikova T.G., Muravyev Ya.D., Kronz A., Wörner G.

 $^{1}$  Институт экспериментальной минералогии РАН, г. Черноголовка; e-mail: gordei@mail.ru

<sup>2</sup> Институт вулканологии и сейсмологии ДВО РАН, г. Петропавловск-Камчатский

Кратко изложен комплекс моделей для определения времен формирования Fo-Ni неоднородностей (диффузионной хронометрии) в оливине. Приводятся результаты моделирования на примере оливинов Авачинского вулкана.

#### Введение

Оливин является одним из первых кристаллизирующихся минералов в эволюционирующем силикатном расплаве. При изменении состава расплава и/или термодинамических условий состав растущего кристалла изменяется, и по изменению состава кристалла от ядра к краю можно проследить его эволюцию от зарождения до извержения на поверхность. Реконструкция истории кристаллов оливина на основе диффузионной хронометрии требует подгонки решения диффузионных уравнений к измеренным концентрациям элементов [5]. Кратко изложим используемую для этого последовательность физической, математической и численной моделей.

### Физическая модель

Рассматриваются две простые физические ситуации: диффузия на краю кристалла с начальной постоянной концентрацией некоторого компонента (Fo или Ni) и диффузия внутри кристалла, изначально состоящего из двух частей, каждая со своей начальной постоянной концентрацией компонента. Как край кристалла, так и граница контакта между частями кристалла предполагаются плоскими с перпендикулярным профилем из измеренных точек, поэтому ниже рассматривается одномерная геометрия. Пространственно однородные значения компонентов вокруг моделируемой зоны используются в качестве начальных условий, они же используются и как граничные условия. Концентрация компонента на краю кристалла интерпретируется как равновесное значение и также используется как граничное условие. Положение границы между частями кристалла обычно соответствует точке максимального градиента Fo и/или Ni. В случае несовпадения положений максимального градиента Fo и Ni предпочтение отдается Ni, так как деформация и искажение профиля Ni происходят медленнее из-за меньшего коэффициента диффузии. Анизотропные коэффициенты диффузии зависят как от термодинамических параметров – давления, температуры, фугитивности  $(P-T-fO_2)$ , так и от состава оливина (Fo). По возможности использовались внешние термодинамические условия для моделируемой зоны: при моделировании диффузии внутри ядра кристалла использовались Р-Т-fО2 условия для обрастания кристалла; при моделировании диффузии в обрастании кристалла использовались P-T-fO $_2$  условия для краевой части кристалла.

#### Математическая модель

Математические уравнения, описывающие диффузию Fo-Ni, имеют вид законов сохранения:

$$\frac{\partial C}{\partial t} = \frac{\partial}{\partial x} \left( D_c^{pr} \frac{\partial C}{\partial x} \right), \tag{1}$$

<sup>&</sup>lt;sup>3</sup> Geowissenschaftliches Zentrum Göttingen, Abteilung Geochemie, Universität Göttingen, Göttingen, Germany

где x – координата вдоль профиля, t – время, C – компонент, для которого записано уравнение, то есть, либо Fo - количество магния, измеряемое в мол. %, либо NiO, измеряемое в мас. %,  $D_{\mathcal{C}}^{pr}$  – коэффициент диффузии компонента вдоль профиля с учетом ориентации кристалла [1, 2, 4, 8]

$$D_C^{pr} = D_C^a \cos^2 \alpha + D_C^b \cos^2 \beta + D_C^c \cos^2 \gamma, \tag{2}$$

где  $D_C^a$ ,  $D_C^b$ , и  $D_C^c$  — коэффициенты диффузии вдоль главных кристаллографических осей, а  $\alpha$ ,  $\beta$ , и  $\gamma$  — углы между направлением профиля и главными осями. Анизотропные свойства Fo и Ni аналогичны и выражаются соотношениями [2, 4]:

$$D_C^a = D_C^b = D_C^c / 6. (3)$$

однородными частями кристалла равно  $x_b$ , то начальные условия для обеих физических ситуаций формулируются единообразно:

$$C = \begin{cases} C_l, & x_l \leq x \leq x_b \\ C_r, & x_b \leq x \leq x_r \end{cases} \tag{4}$$
 где  $x_l$  и  $x_r$  левая и правая границы рассматриваемой области,  $C_l$  и  $C_r$  — начальные

значения компоненты слева и справа от границы контакта. Граничные условия слева и справа также имеют значения  $C_l$  и  $C_r$ , соответственно. При моделировании диффузии на краю кристалла, например, на левом краю, значения  $x_l$  и  $x_b$  совпадают, а  $\mathcal{C}_l$  следует интерпретировать как равновесное значение компоненты на левом краю кристалла.

Коэффициент диффузии для Fo рассчитывался по [2, стр. 617]:

$$D_{Fo}^{c} = 10^{-9.21} \left(\frac{fO_2}{10^{-7}}\right)^{\frac{1}{6}} 10^{3\left(0.9 - \frac{Fo}{100}\right)} exp\left(-\frac{201000 + (P - 10^5) \cdot 7 \cdot 10^{-6}}{RT}\right),\tag{5}$$

а для Ni по [2, стр. 618]:

$$D_{Ni}^{c} = 3.84 \cdot 10^{-9} \left( \frac{fO_2}{10^{-6}} \right)^{\frac{1}{4.25}} 10^{1.5 \left( 0.9 - \frac{Fo}{100} \right)} exp \left( -\frac{220000 + (P - 10^5) \cdot 7 \cdot 10^{-6}}{RT} \right), \tag{6}$$

где  $fO_2$  — фугитивность и P — давление в Паскалях, T — температура в Кельвинах, коэффициенты диффузии  $D_C^c$  и универсальная газовая постоянная R измеряются в системе единиц СИ.

Уравнения (5) и (6) показывают, что решение уравнения (1) для NiO никак не влияет на решение уравнения для Fo; поэтому систему уравнений диффузии (1) можно решать последовательно относительно Fo и Ni: сначала решается уравнение для Fo, а затем при известной зависимости Fo(x,t) решается уравнение для NiO. Отметим, что зависимость коэффициентов диффузии от Fo(x,t) обеспечивает нелинейные свойства уравнениям (1). Это обстоятельство требует численного решения уравнений диффузии.

## Численная модель

Разработан шаблон таблицы Excel для расчета временных масштабов диффузии Fo и Ni. Входными данными являются угловые данные об ориентации кристаллов, полученные методом EBSD, а также термодинамические параметры, полученные минеральными окситермобарометрами. Координаты введенных точек измерения корректируются по алгоритму [3], так как в процессе измерения некоторые точки отклонялись от прямой из-за трещин, различного рода включений и других дефектов кристалла. Если две точки находятся очень близко друг к другу, тогда либо одна из них отбрасывается, либо две точки объединяются в одну с осреднением, чтобы шаг по времени не уменьшался существенным образом.

Явная консервативная конечно-разностная схема [7] является разностным аналогом уравнения диффузии

$$C_i^{n+1} = C_i^n + \tau \frac{\left(\Phi_{i-\frac{1}{2}}^C - \Phi_{i+\frac{1}{2}}^C\right)}{v_i},\tag{7}$$

где  $C_i^n$  — значение компонента в ячейке i на временном слое n,  $\tau$  — временной шаг между слоем n и n+1,  $v_i=(x_{i+1}-x_{1-1})/2$  — размер ячейки i,  $\Phi_{i+\frac{1}{2}}^C$  — поток

$$\Phi_{i+\frac{1}{2}}^{C} = -D_{i+\frac{1}{2}}^{C} \cdot \frac{C_{i+1}^{n} - C_{i}^{n}}{x_{i+1} - x_{i}},$$
(8)

компонентов между ячейками i и i+1, то есть разностный аналог закона Фика:  $\Phi_{i+\frac{1}{2}}^{\mathcal{C}} = -D_{i+\frac{1}{2}}^{\mathcal{C}} \cdot \frac{\mathcal{C}_{i+1}^{n} - \mathcal{C}_{i}^{n}}{x_{i+1} - x_{i}}, \tag{8}$  где  $D_{i+\frac{1}{2}}^{\mathcal{C}} = \left(D_{i}^{\mathcal{C}} + D_{i+1}^{\mathcal{C}}\right)/2$  – усредненный коэффициент диффузии по соседним ячейкам. Коэффициент диффузии  $D_i^{C}$  для компоненты C вычисляется по (5) или (6).

Конечно-разностная схема устойчива при временном шаге  $\tau < (v_i)^2/2D_i^C$  [7].

Расчет выполняется в два этапа. На первом этапе необходимо определить границы расчетной области, выбрать начальное положение границы  $x_b$ , и задать значения  $Fo_l$  и  $Fo_r$ . В результате расчета будет определено время, при котором численное решение Fo наилучшим образом соответствует измеренным данным. Сумма квадратов разностей между численным решением и измеренными точками используется в качестве критерия наилучшего решения. На этом этапе значения  $x_b$ ,  $Fo_l$ , и  $Fo_r$  могут быть скорректированы и наилучшим образом подобраны. На втором этапе выбираются значения  $NiO_l$  и  $NiO_r$ , и находится время, при котором численное решение для Ni наилучшим образом соответствует измеренным данным.

# Результаты моделирования

Модели применялись к анализу структуры неоднородных оливинов из пород Авачинского вулкана (таблица).

Таблица. Использованные образцы.

| Объект        | Образец   | Оливины, шт. | Время подъема, дни          | Время пребывания, дни |
|---------------|-----------|--------------|-----------------------------|-----------------------|
| Конус Попович | AVA-17-06 | 3            | 1-17                        | 21-386                |
| Конус Страж   | AVA-17-08 | 4            | 5-45                        | 12-190                |
| Авачит        | AVA-14-01 | 9            | Время остывания: 200-11 000 |                       |

Оливины из пород двух Авачинских конусов оказались весьма схожи между собой по внутренней структуре: ядра окружены обрастаниями от расплавов, вынесших оливины на поверхность, приблизительно такая же структура наблюдалась в оливинах маара Шивелуча 7600 ВР [6]. В ядрах Го и Ni изменяются плавно, а в обрастаниях имеют крутые градиенты на внутренней границе обрастание-ядро и на внешней границе каждого кристалла (рисунок). Внутренние ядра имеют как прямую зональность, когда форстерит и никель уменьшаются по направлению к краю, так и обратную, когда форстерит и никель увеличиваются к краю кристалла. Такое поведение свидетельствует о контрастных составах расплавов в магматической камере, неравновесных с попавшими в них оливинами. Характерные времена пребывания оливинов в неравновесном составе варьируют от 21 до 386 дней для конуса Попович, и от 12 до 190 дней для конуса Страж. Времена подъема оливинов, то есть их выноса на поверхность несущим расплавом варьирует от 1 до 17 дней для конуса Попович, и от 5 до 45 дней для конуса Страж.

Концентрации элементов в оливинах авачитов плавно изменяются от ядра к краю (рисунок). Времена действия диффузии в оливинах авачитов оказались заметно больше, чем для конусов, 200-11 000 дней. Длительные времена действия диффузии в оливинах авачитов свидетельствуют об интрузивном происхождении пород и их медленном остывании.

Полевые работы и лабораторные измерения проводились в рамках НИР № FWME-2024-0009, модели разрабатывались в рамках НИР № FMUF-2022-0004.

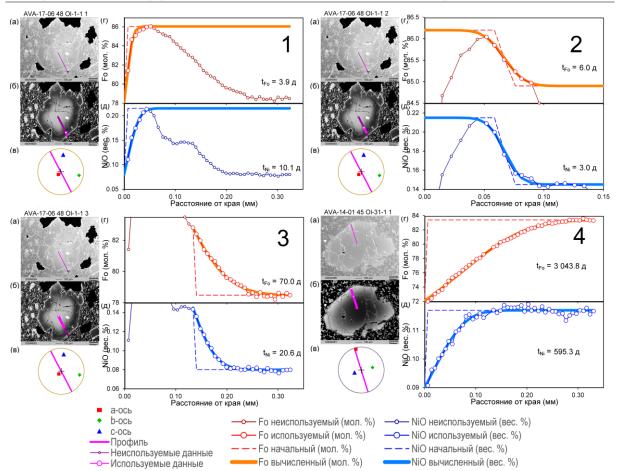



Рисунок. Характерный оливин Авачинских конусов: краевая зона -1, обрастание -2, ядро -3. Характерный оливин авачита -4. Изображение во вторичных электронах (а) показывает оливин и измеренный профиль. Изображение в обратно рассеянных электронах (б) показывает распределение атомного веса по оливину и положение использованных и неиспользованных в расчете точек. Стереографический график нижней полусферы (в) отображает проекции профиля и кристаллографических осей а, b и с. Графики Fo (г) и NiO (д) показывают измерения, используемые и неиспользуемые в расчетах, в также начальные данные и результаты моделирования.

### Список литературы

- 1. *Carslaw H.S., Jaeger J.C.* Conduction of Heat in Solids. Second edition. Oxford: Clarendon Press, 1959. 520 p.
- 2. *Chakraborty S.* Diffusion coefficients in olivine, wadsleyite and ringwoodite // Reviews in Mineralogy and Geochemistry. 2010. Vol. 72, Is. 1. P. 603-639. https://doi.org/10.2138/rmg.2010.72.13
- 3. *Chernov N.* Circular and Linear Regression: Fitting Circles and Lines by Least Squares // Monographs on statistics and applied probability. CRC Press, 2010. 286 p.
- 4. *Costa F., Chakraborty S.* Decadal time gaps between mafic intrusion and silicic eruption obtained from chemical zoning patterns in olivine // Earth and Planetary Science Letters. 2004. V. 227. Is. 3. P. 517-530. https://doi.org/10.1016/j.epsl.2004.08.011
- 5. Costa F., Dohmen R., Chakraborty S. Time scales of magmatic processes from modeling the zoning patterns of crystals // Reviews in Mineralogy and Geochemistry. 2008. V. 69. Is. 1. P. 545-594. https://doi.org/10.2138/rmg.2008.69.14
- 6. *Gordeychik B., Churikova T., Kronz A. et al.* Growth of, and diffusion in, olivine in ultra-fast ascending basalt magmas from Shiveluch volcano // Scientific Reports. 2018. V. 8. Is. 1. Art. 11775. https://doi.org/10.1038/s41598-018-30133-1
- 7. Roache P.J. Computational Fluid Dynamics. Albuquerque: Hermosa Publishers, 1976. 446 p.
- 8. *Shea T., Costa F., Krimer D., Hammer J.E.* Accuracy of timescales retrieved from diffusion modeling in olivine: A 3D perspective // American Mineralogist. 2015. V. 100. Is. 10. P. 2026-2042. https://doi.org/10.2138/am-2015-5163