УДК 551.312.16

О ТЕМПЕРАТУРАХ ОБРАЗОВАНИЯ ЖИЛЬНЫХ ЗОН АГИНСКОГО МЕСТОРОЖДЕНИЯ

Андреева Е.Д.

Институт вулканологии и сейсмологии ДВО РАН г. Петропавловск-Камчатский

Научный руководитель: к.г.-м.н. Округин В.М.

В сообщение приведены новые данные о температурах гидротермального раствора, отлагавшего жильные тела Агинского Au-Ag-Te месторождения. На основе текстурно-структурного анализа установлено шесть стадий минералообразования. Первая - дорудная, вторая - основная продуктивная, третья, четвертая и пятая отнесены к пострудному циклу и представлены продуктами гидротермального брекчирования с последующим осаждением аметистоподобного кварца и карбонатов. Шестая стадия - гипергенная. Температуры гомогенизации первичных включений кварца продуктивных стадий жильных зон Агинская и Сюрприз составили: 230-270 °C и 200-290 °C, соответственно. Аметистоподобный кварц пострудной стадии кристаллизовался при температурах 240-270 °C. Соленость минералообразующих раствора не выше 2 масс.% (в пересчете на NaCl).

Ключевые слова: газово-жидкие включения, стадии минералообразования, золото, теллуриды, гидротермальнй взрыв, Камчатка.

ВВЕДЕНИЕ

Агинское эпитермальное Au-Ag-Te месторождение входит в число наиболее крупных золоторудных объектов Центрально-Камчатского горнорудного района (ЦКГРР). Территориально ЦКГРР охватывает водораздельные части Срединного и Козыревского хребтов. Район, включающий около 30 месторождений золото-серебряной формации, приурочен к наиболее приподнятому блоку Центрально-Камчатского вулканического пояса и его сочленению с выступами мелового кристаллического фундамента (рис. 1) [9]. Благородно-метальная минерализация, как правило, локализуется в пределах вулканических построек среднего состава. На основании ранее проведенных геолого-поисковых работ выделены следующие минеральные типы месторождений района: полисульфидный, теллуридный, золотой и сульфосолевый [9].

Агинское месторождение главный источник коренного золота Абдрахимовского рудного поля, занимает северо-восточный склон кальдеры Агинского палеовулкана. Общие запасы золота на месторождении составляют 30.9 т при средней концентрации металла 38 г/т. С конца 2006 года на базе месторождения действует Агинский ГОК с проектной мощностью 150 тыс. т руды в год и годовом производстве сплава Доре около 2-3т [5]. За сравнительно короткий период эксплуатации месторождения добыто более 10 т золота.

Рис. 1. Схематическая карта расположения Агинского месторождения.

ГЕОЛОГИЯ МЕСТОРОЖДЕНИЯ

Агинское месторождение занимает северо-восточный склон одноименного палеовулкана, сложенного слабо дифференцированными вулканитами среднего и основного состава [1, 9]. Среди них выделяют туфы андезитов, двупироксеновые андезибазальты нижней толщи алнейской серии; оливин-олигоклазовые базальты, андезиты, андезидациты и брекчиевые лавы базальтов верхней толщи алнейской серии. Подстилающие образования представлены нерасчлененной толщей переслаивающихся туфопесчаников и туфоалевролитов. Четвертичные покровы плагиофировых андезитов и оливиновых базальтов распространенны, главным образом, за пределами кальдеры Агинского палеовулкана (рис. 2). Рудные тела приурочены к жильным зонам и жилам трех типов: а) слож-

ные по своей морфологии, отличающиеся наибольшими мощностью и запасами, локализованные в крупных сколового характера системах разрывных нарушений Агинского жильного пучка (Агинское, Сюрприз, Малыш, Блуждающее); б) менее продуктивные, но с высокими содержаниями металла, также связаны со СКОЛОВЫМИ трещинамиперемычками (Олимпийское, Ноябрьское); в) мелкие жилы, зоны прожилкования в трешинах отрывах (Находка, апофизы зоны Валери). Возраст рудных тел по данным

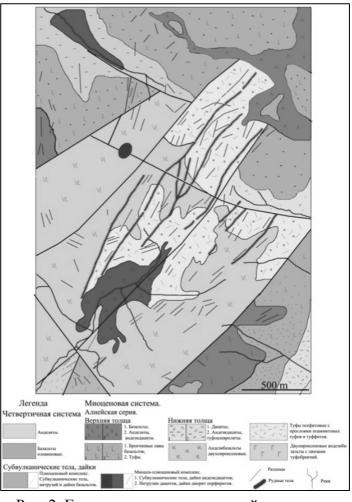


Рис. 2. Геологическое строение района месторождения.

К/Аг методу составляет 6.9, 7.1-7.5 млн. лет [8, 9].

МЕТОДЫ ИССЛЕДОВАНИЯ

Для оптического (визуального) изучения газово-жидких включений с классификацией на первичные, вторичные и псевдовторичные разновидности применялся микроскоп проходящего света Nikon Eclipse E400 POL. В основу классификации флюидных включений были положены критерии Н.П. Ермакова и Э. Роддера [6, 7, 10]. Криометрия и последующая гомогенизация всех выделенных типов газово-жидких включений осуществлялись на базе камеры Linkam в лабораториях университетов Москвы и Сап-

поро (Хоккайдо, Япония). Плотность (соленость) растворов рассчитывалась по температуре плавления последнего кристалла льда с температурным шагом $1-0,1^{0}$ С/мин. Температуры гомогенизации фиксировались по исчезновению газовой фазы. Включения подвергались нагреванию с температурным градиентом 1^{0} С/мин.

МИНЕРАЛОГИЯ И СТАДИИ МИНЕРАЛООБРАЗОВАНИЯ

Для руд Агинского месторождения характерны крустификационнополосчатые и брекчиевые текстуры, с заметным преобладанием последних (рис. 3). Текстуры крустификационного и колломорфно-полосчатого типа встречены только в рудных телах Агинской жильной зоны.

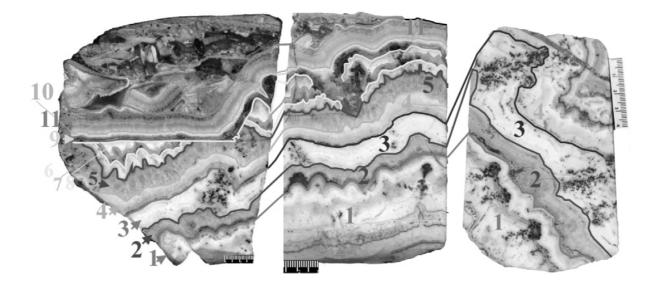


Рис. 3. Комбинации коломорфно-крустификационно-полосчатых текстур с брекчиевыми, отнесенные к стадиям II и III, соответственно. Стадия II - ритмичное чередование слоев кварц-адуляр-глинистого состава. В полосах молочно-белого кварца рассеяна ранняя золото-серебротеллуридная минерализация. Более поздняя серебро-теллуридная минерализация концентрируется в узкой полосе метаколлоидного кварца. Отложение минералов серебро-теллуридного типа (алтаит, гессит, петцит) возможно было спровоцировано гидротермальным взрывом.

Вкрапленность рудных минералов тяготеет к полоске молочнобелого фарфоровидного и метаколлоидного халцедоновидного кварца. Крустификационно-полосчатые текстуры наблюдаются в приконтактовых частях жил с вмещающими породами. В центральных частях жильной зоны более развиты текстуры брекчиевого характера.

Сопредельная жильная зона Сюрприз состоит из сильно брекчированного жильного материала, затрудняющего установление хронологической последовательности накопления кварц-адуляр-глинистых слоев, несущих наиболее богатую золото-серебро-теллуридную минерализацию. Здесь резко увеличивается роль брекчиевых текстур, иллюстрирующих многократное дробление раннее отложенного жильного материала. Для изучения последовательности отложения жильного и рудного вещества в качестве эталонов были взяты представительные образцы различных рудных тел Агинской жильной зоны.

На основе текстурно-структурного анализа установлено шесть стадий минералообразования, характеризующихся широкими вариациями физико-химических параметров (C-P-T-pH) гидротермального раствора [2, 3, 4, 8].

Стадия I представлена псевдополосчатым молочно-белым скрытокристаллическим кварцем с тонкодисперсной вкрапленностью пирита.

К стадии II отнесены своеобразные микроритмы-полоски, сложенные кварц-адудяр-глинистым веществом, насыщенным в той или иной степени рудными минералами (от электрума до блеклой руды и Сссодержащего сфалерита). Характерна тесная связь рудного вещества с игольчатыми кристаллами адуляра. Предполагается, что два полярных типа минерализации - золото-серебро-теллуридный и серебро-теллуридный

могли образоваться в течение второй стадии (рис. 2).

Типоморфные минералы золото-серебро-теллуридного типа - самородное золото с пробностью 800-900, калаверит, петцит, халькопирит, ряд редких интерметаллических соединений золота, таких как билибинскит, безсмертновит и богдановит. Серебро-теллуридный тип характеризуется широким распространением гессита, алтаита и петцита, ассоциирующих с халькопиритом, Сd-содержащим сфалеритом и золотом

Стадия III - гидротермальные брекчии (результат вскипания) - состоят из обломков кварца более ранних стадий, часто содержащих электрум в срастаниях с сульфидами, теллуридами и теллуратами. Цемент - кварцадуляр-цеолитовый материал.

Стадии IV и V отнесены к пострудным этапам. Они сложены агрегатом кварца и карбоната. Отмечаются локально в центральных частях жил.

Стадия VI - гипергенная, в ходе которой образовался ряд вторичных минералов теллура и высокопробное самородное золото.

Фрагменты, описанных выше стадий, были откартированы в рудных телах верхних горизонтов Агинской жильной зоны, а также на отдельных участках жильной зоне Сюрприз.

РЕЗУЛЬТАТЫ ИССЛЕДОВАНИЯ

Микропорции материнского гидротермального раствора, законсервированные в многочисленных структурных дефектах небольших кавернах и трещинах кварца информативный признак - температуры, состава и давлений рудообразующей среды [6, 7, 10].

Для оценки температур минералообразующих гидротермальных растворов, их вариаций в процессе становления рудных тел Агинского месторождения был отобран кварц второй продуктивной стадии и аметистоподобный кварц четвертой пострудной стадии из жильных зон Агинская и Сюрприз.

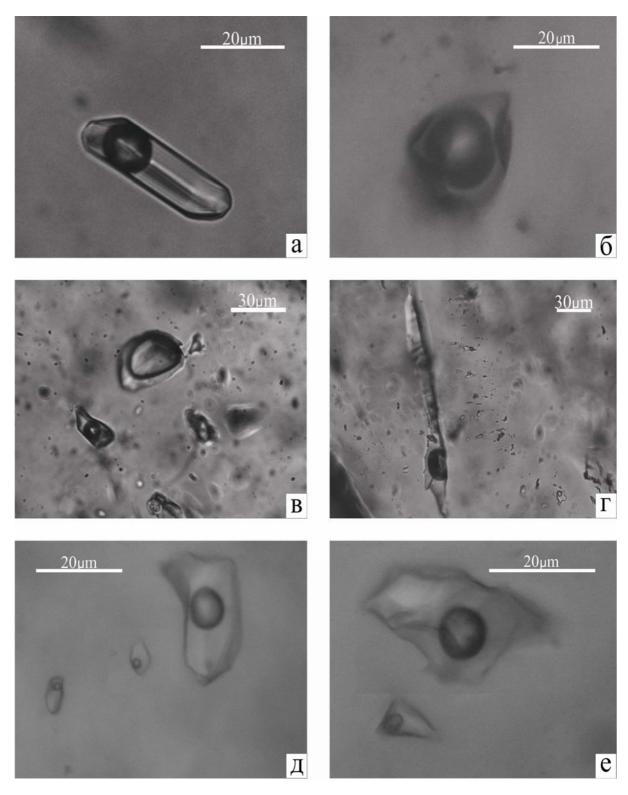


Рис. 4. Морфологические типы газово-жидких включений золотоносного кварца месторождений Агинское (а-г) и Южно-Агинское (д,е): а - первичное включение трубчатой формы с газовой фазой 20 об. %; б - изометричное первичное включение с объемом газовой фазы до 80 об.%; в - включения с широкими вариациями газовой и жидкой фаз; г - включение расшнурованного типа; д, е - группы первичных включений с газовой фазой 20 об.%.

Большинство попыток замерить температуры криометрии и гомогенизации газово-жидких включений скрытокристаллического кварца Агинской жильной зоны, не увенчались успехом ввиду весьма мелких размеров вакуолей.

Наиболее удачные включения для проведения экспериментов были найдены в продуктивном кварце и постпродуктивном аметистовом кварце рудного тела Сюрприз, что позволило оценить флуктуации температуры в процессе эволюции гидротермальной рудообразующей системы.

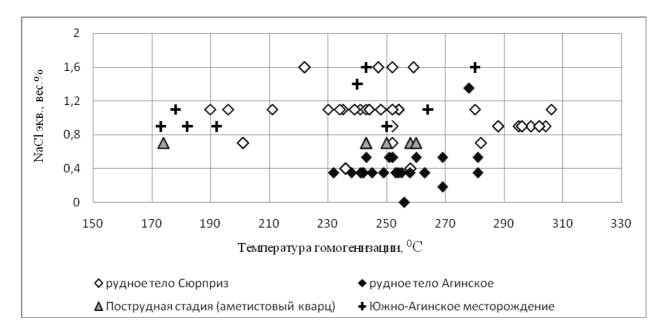


Рис. 5. График зависимости температур гомогенизации и плотности флюидных включений золотоносного кварца рудных тел Агинское и Сюрприз, пострудного аметистоподобного кварца Агинского и кварцевых жил Южно-Агинского месторождений.

Микропорции гидротермальных минералообразующих растворов - флюидные включения были установлены как в кварце, слагающем массивные агрегаты с видимой золотой минерализацией, так и в отдельных кристаллах кварца гидротермальных брекчий. Нами были детально изучены газово-жидкие включения и среди них выделены первичные, вторичные и псевдовторичные (или мнимо вторичные) разновидности [10].

Первичные включения с размерами 40 и более микронов представлены двумя типами: существенно жидкие и существенно газовые. Причем очень часто они встречаются совместно. Существенно жидкие включения пользуются преимущественным развитием по сравнению с газовыми. Температуры гомогенизации, замеренные для включений кварца продуктивной стадии, у которых объем газовой фазы менее 50 % объема вакуолей, варьируют в пределах 230-270°C для Агинской жильной зоны и 230-290°C для жильной зоны Сюрприз.

Практически такие же температуры гомогенизации получены для включений пострудного аметистоподобного кварца, а именно - 174-260°C. Такое совпадение температур гомогенизации можно объяснить осцилляцией минералообразующих растворов.

Жильный кварц Южно-Агинского месторождения, локализованного в южном секторе Агинской кальдеры, отличается наличием исключительно мелких (размеры от 5 до 30 микрон) преимущественно существенно жидких включений. При этом, как правило, вакуоли концентрируются в вершинных частях микрокристаллов кварца. Достаточно четко выделяются два температурных интервала гомогенизации включений:

- 1. относительно низко температурный $170-200^{\circ}$ С;
- 2. более высоко температурный $240-290^{\circ}$ C.

ВЫВОДЫ

В жильных образованиях Агинской эпитермальной системы, сформированной в течение 6-ти стадий, установлены газово-жидкие включения двух типов: существенно жидкие и существенно газовые. Первый тип включений - преобладающий. Коэффициенты заполнения (объем газовой фазы) вакуолей включений варьируют от 10 до 90 %.

Первичные включения золотоносного кварца рудной зоны Агинская гомогенизировались в интервале температур $230-270^{0}$ C, а зоны Сюрприз - $200-290^{0}$ C.

Температуры первичных включений пострудной стадии меняются в пределах 240-270 0 C.

Спад температур, характерный для многих эпитермальных месторождений, не был зафиксирован на Агинском месторождении, что свидетельствует о своеобразной осцилляции рудообразующих растворов в условиях достаточно выдержанного температурного градиента.

Золото и сопутствующие ему минералы отлагались из гидротермального раствора с температурами порядка $250-260~^{0}$ C.

ЛИТЕРАТУРА

- 1. Андрусенко Н.И., Щепотьев Ю.М. Температурный режим формирования и стадийность субвулканических золото-серебряных месторождений Центральной Камчат-ки // Геохимия, №2, 1974. С. 179-186.
- 2. Андреева Е.Д., Округин В.М., Матсуеда Х., Оно Ш., Такахаши Р. Особенности формирования рудных тел Агинского месторождения, Центральная Камчатка // Материалы XXI Международной конференции, посвященной 100-летию со дня рождения академика В.И. Смирнова «Фундаментальные проблемы геологии месторождения и металлогении». Москва, 2010. С.15-17.
- 3. Андреева Е.Д., Округин В.М., Матсуеда Х., Буханова Д.С. Сравнительная характеристика золото-серебряной и теллуридной минерализации Агинского месторождения, Центральная Камчатка: Международное совещание «Новые горизонты в изучении процессов магмо- и рудообразования». М., 2010.
- 4. Андреева Е.Д. Au-Ag-Te минерализация Агинского месторождения (Центральная Камчатка) // Вестник ДВО. 2010. С.148-153.
- 5. Горшков Г. ЗАО «КамГолд»: 15 лет испытаний, надежд и свершений // Горный Вестник. 2009. С. 10-12.
- 6. Ермаков Н.П. Геохимические системы в минералах. М., 1972.
- 7. Мельников Ф.П., Прокофьев В.Ю., Шатагин Н.Н. Термобарогеохимия. М., 2008. С. 224.
- 8. Округин В.М. О возрасте и генезисе эпитермальных месторождений зоны перехода континет-океан (Северо-западная Пацифика). Магадан, 2001.
- 9. Петренко И.Д. Золото-серебряная формация Камчатки. ВСЕГЕИ, 1999. С. 116.
- 10. Roedder E.B. Fluid inclusions // Mineralogical Society of America. Review in Mineralogy. 19846 V.12. P. 644.

FORMATION TEMPERATURE OF THE AGINSKOE DEPOSIT BASED ON THE FLUID INCLUSION DATA

Andreeva E.D.

The Institution of the Volcanology and Seismology FEB RAS

Mineralogical and fluid-inclusion studies were conducted on the ore samples from the Au-Ag-Te Aginskoe deposit. Based on the detailed observation of specimens six major mineralization stages have been recognized. The stage II is productive on gold-silver-telluride and silver-telluride mineralization. The latest stage VI was classified as supergene, however, some gold was also confirmed in this stage. The stage IV post-ore amethyst was regarded to be suitable for the microthermometric analysis. Basically, stage II quartz hosting gas-liquid and gas-rich inclusions homogenized at the temperature of 250-260 °C, in general. Stage IV amethyst hosting liquid-rich and gaseous inclusions yielded the temperature of 240-260 °C. Thus, temperature was constant through metal-rich stage II to post-ore stage IV. Filling temperature of primary inclusions for quartz from the South-Aginskoe deposit show identical range with the Aginskoe deposit – 240-290°C.

Key words: fluid inclusions, mineralization stages, gold, tellurides, deposit, Kamchatka.